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ABSTRACT

A new derivation of the equations of invariant imbedd-
ing for transport problems is presented. Such problems, which
take on the form of two point boundary value problems for two
abstract ordinary differential equations, are to be transformed
into initial value problems. For this, a general theory of
characteristics is developed, which then is applied to estab-
lish the equivalence between the two ordinary differential
equations - considered as characteristic equations - and an
abstract partial differential equation. Furthermore, an im-
bedding of the given boundary value problem into a family of
initial value problems now leads to a Cauchy problem for this
partial differential equation, whose solution yields an add-
itional boundary value for the original problem, thus trans-
forming it into an initial value problem. Finally, it is
shown that the abstract partial differential equation is the
underlying imbedding equation which, for transport problems,
reduces to the known equations derived with the method of

invariant imbedding.
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INTRODUCTION

In the last decade the so-called method of invariant
imbedding has been developed to treat the boundary value
problems arising in transport theory. Usually, this theory
leads to two point boundary value problems for ordinary,
partial, or integro-differential equations - the so-called
Boltzmann formulations - which the method of invariant
imbedding then transforms into Cauchy problems. In contrast
to the original boundary value problem, the new problems
are easier to solve numerically, and extensive calculations
based on these Cauchy problems have been performed for cer-
tain neutron transport processes in slab geometries (seel 5]
and [6]).

Underlying the derivation of an initial value problem
from a boundary value problem is the idea of imbedding the
given problem into a whole family of similar problems depend-
ing on one or more parameters, and to determine the behavior
of the solution for the boundary value problem as a function
of these parameters. This variation is described by the so-
called imbedding equation, and its solution supplies the
additional boundary value which transforms the given boundary

value problem into an initial wvalue problem.




In transport theory the Boltzmann formulation is usually
imbedded into a family of similar boundary value problems
defined for models of different physical size. 1In the early
papers on invariant imbedding, the corresponding imbedding
equation was then derived by observing the behavior of part-
icles in these models (see [21] and the reference given there).
However, for complicated geometries of the model these so-
called particle counting methods were prone to error (see[2]),
and subsequently, perturbation methods have been developed
which allow a formal, but not always rigorous, mathematical
derivation of the imbedding equation from the Boltzmann
equations. An up to date account of this size perturbation
approach is given in [22]; a mathematically rigorous treatment
from the same point of view may be found in {1] for certain
linear transport prcbklems,

An extension of the perturbation technique was recently
given by Devooght in [9]. There, the parameters of the imbedd-
ing no longer were restricted to the size of the model but
could also describe other properties of interest to the physi-
cist, such as density, cross section, etc. The imbedding
equation is then derived from a Green's function representation
of the solution for the Boltzmann equations.

Since information about a given transport process is




easier to obtain from the invariant imbedding equation than
from the corresponding Boltzmann formulation, imbedding
equations for a large number of physical systems have been
derived. However, all previously known derivations share
the same defect; namely, given a particular transport prob-
lem, ad hoc methods had to be used in order to find the
corresponding imbedding equation. Thus, for each boundary
value problem a new equation was obtained with a new and
often different method.

It is the purpose of our presentation to show that the
imbedding equations of transport theory are merely different
forms of a single underlying generalized imbedding equation.
For this we shall consider from a functional analytic point
of view a general class of two point boundary value problems.
Without recourse to physical models, these problems will be
expressed in the form of two abstract ordinary differential
equations defined on arbitrary Banach spaces, thus including
ordinary, partial, and integro-differential equations. These
equations need not be linear, but it is always assumed that
the Cauchy problem for the abstract differential equations
has a unique solution. Using a generalized theory of character-
istics for infinite dimensional vector spaces, we shall prove

that the abstract ordinary differential equations are equivalent




to a certain abstract partial differential equation - the
generalized imbedding equation. Furthermore, we shall show
how an imbedding of the given boundary value problem into a
family of initial value problems leads to a Cauchy problem
for the imbedding equation. And finally, we shall illust-
rate how the generalized imbedding equation reduces to the
known imbedding equations for specific problems of transport
theory.

Our treatment of boundary value problems shall be pre-
sented in three chapters. Chapter 1 contains an outline of
the size perturbation approach for finding the imbedding
equation corresponding to the scalar

Problem A: u'(t)

F(t,y,u) u(a) = «

G(t,y,u) y(b) = &,

y' ()
where F and G are assumed to be differentiable functions.
This approach is then contrasted to the new method, where
we shall interpret u' = F and y' = G as the characteristic
equations of the first order partial differential equation
(0) u (t,y) + uy(t,y)G(t,y,u) = F(t,y,u).

An imbedding of problem A into a class of initial value
problems is then proposed which leads to a Cauchy problem
for (0). From its solution we can now determine the unknown

value u(b) of problem A, thus transforming it into an initial




value problem.

In the next two chapters these results are generalized
to abstract boundary value problems defined on arbitrary
Banach spaces. In chapter 2 we shall consider problems
analogous to problem A, where F and G are assumed to be
Frechet differentiable. After developing a generalized
theory of characteristics, we can imbed the given boundary
value problem into a Cauchy problem for an abstract imbedd-
ing equation, which again takes on the form of equation (0).
Its solution, which is shown to exist at least locally,
will then transform problem A into an initial value problem.
For linear boundary value problems, the imbedding equation
reduces to two abstract ordinary differential equations
which are seen to generalize the equations obtained from the
sweep method [12]. This linear theory is then applied to

the steady state transport

1

Problem B: UN. (t,H) + oN(t,u) = X2 J N(t,))dar
t 2 Jq

N(O,n) = O for u e (0,1]

N(tl,p) = g(u) for p ¢ [-1,0).
In the last chapter we shall consider two point boundary
value problems analogous to problem A, where u' = F and y' = G

are linear evolution equations of the form x' = Ax + Bx + f(t).




In this case A is a closed and B a bounded linear operator

on a separable Banach space, and f is a given abstract func-
tion. Using the concept of analytical groups of operators,
we can extend our generalized theory of characteristics to
include the case when the characteristic equations are evolu-
tion equations., We shall then show that the boundary value
problem again leads to a Cauchy problem for equation (0),

and that this problem has a unique local solution. Finally,
this theory is used to find the imbedding equation‘for the

time dependent one dimensional transport

Problem C: uz(z,t) + ut(z,t) y(z,t), u(0,t) = 0O
—yz(z,t) + yt(z,t) = u(z,tL y(zl,t) = g(t)

where g(t) is assumed to remain finite for all t,




CHAPTER 1
SCALAR TRANSPORT PROBLEMS

In this chapter we shall use problem A to illustrate
the new approach mentioned in the introduction for deriving
the imbedding equation for two point boundary value problems.
In section 1.1 the underlying physical system leading to
problem A is described, and then the method of invariant im-
bedding is outlined. Section 1.2 contains a summary of the
theory of characteristics for a single first order partial
differential equation and the new derivation of the imbedding
equation for problem A. Linear problems are considered in 1.3,
and finally, section 1.4 lists examples which point cul some

limitations of the new approach.

1.1 The Invariant Imbedding Approach. The method of in-

variant imbedding has been applied to certain boundary value
problems arising in transport theory. For one dimensional
models such a problem generally takes on the form of problem A

stated in the introduction:

Problem A u'(t) F(t,v,u) u(a) o

i
i

v'(t) G(t,v,u) v(b) <

- where F and G are continuously differentiable functions on



some domain D C E3. As discussed by Wing [227, this problem
is an abstract description of a particle transport in a one
dimensional rod extending from t = a to t = b, Here, u(t)
‘and v(t) are the expected densities of particles at position
t moving to the right and to the left, resp., and the func-
tions F and G represent the interactions of the particles
with the system as well as with each other at a given point.
u(a) and v(b) then are the particle densities entering the
rod from the left and from the right, resp. Problem A is
the so-called Boltzmann formulation for this one dimensional
model.

In practice the complete solution {u(t),v(t)} of problem
A is of less interest than the particular value uib), namely
the density of particles emerging at the right hand side of
the rod (see [22]). An experimenter can find u(b) by ob-
serving the variation of u(b) as a function of the rod length
(b-a) and the input v(b), i.e. by changing the "size" of the
system. The method of invariant imbedding describes this
approach mathematically, and in the following we give an
outline of Wing's derivation of the imbedding equation based
on the mentioned concept of size perturbation (see [22]).

Suppose that the rod of problem A extends from t = a to

t = x and that the varying input is given as v{(x) = y. Then
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the above Boltzmann formulation assumes the form:

(1.1.1) u'(t) F(t,v,u) u(a)

o

v'(t) G(t,v,u) vix) = y.
The imbedding equation to be derived from (1.1.l1) expresses
the output u at x as a function of x and y.

Let us assume that problem (1.1.1) admits a unique
solution {u,v} for each x = b and all y and that, moreover,
this solution is continuously differentiable with respect
to the parameters x and y. In order to take into account
the dependence of {u,v} on x and y, we shall introduce the

notation u = u(t,x,y), v = v(t,x,y). Then differentiation

with respect to x and y leads to

= F u =+ F v
tx u x v X

v, = Gu_ + G v

tx u X v X

and u =Fu + Fv
ty uy vy

v = Gu + Gv

Since F, G, u, and v were assumed to be continuously dif-

ferentiable, the order of differentiation may be interchanged;

this yields the following two identical linear systems

(1.1.2) u \' (F F u
x| _ u v X
v G G v
X u v x |
u \' F F u
Yi_ u v y
v G G v .
Yy u v VY s
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Differentiation of the boundary conditions results in

I
o

uX(O,x,y)

I
o

u (0,x,y)
v y
vt(x,x,y) + vx(x,x,y) =0

v (x,x,y) = 1.
y( Y

Let C(t,r) be the fundamental matrix of (1.1.2), then the
solution of (1.1.2) which assumes at t = 0 the given initial

value can be expressed as

u ¢
X
= C(t,0)
vX vx(O,x,y)
uy 0
= C(t,0) (0 )
v v , X, .
Yy y Y

H t,x, = t,x, , t,x, = C t,x, where
ence ux( X,v) cuy( X,Y) vx( y) Vy( y)

c is a constant. From vy(x,x,y) = 1 and vt(x,x,y) = —vx(x,x,y)
now follows that c = —vt(x,x,y) and, therefore, that
ux(t,x,y) = —Vt(X,X,Y)U-y(t:X,Y)

Vx(tlxly) = —Vt(x,X:Y) Vy(tlxly) hd

For the particular function R(x,y) defined by R(x,y) = u(x,x,y),
the chain rule then yields

RX(X.y) = ut(x,X.y) + ux(x,x,y).

Using this together with (1.1.1) and ux(t,x,y) = ~vt(x,x,y)uy(t,x,y),
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we finally obtain the imbedding equation

(1.1.3) R (x,y) + Ry(x,y)G(x,y,R(x,y)) = F(x,y,R(x,y)).

The boundary condition u(a) = « is independent of x and vy,
which requires that u(a,a,y) = R(a,y) = «. The desired value
u(b) of problem A then satisfies
u(b) = u(b,b,R) = R(b,8).

The one dimensional rod is the simplest but, from a physi-
cal point of view, also the most unrealistic transport model
to which the method of invariant imbedding can be applied.
The following more complicated problem describes a one dimen-
sional transport where particles may be at different energy

levels (see(22]):

(1.1.4) u'(t) = Flt,v,u) ala) -«
v'(t) = G(t,v,u) vib) = 8.
Here, u = (ul,...,um) and y = (yl,...,yn) are mappings from

[a,b] into Em and En, resp., and F and G are vector valued
functions which are assumed to be differentiable on some do-
main Do [a,b] x E" x Em. In this case also R(x,y) is a vector
valued function, and the imbedding equation can be derived in
a manner similar to that given above for problem A. For the
case when F and G are linear in u and y, the derivation is
contained in [3]. With respect to the general boundary value

problem (1.1.4) Wing states in [22], "In the more general
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non-linear case the perturbation gets rather involved..."

One of the main reasons for the special success of the
method of invariant imbedding in the case of linear problems
is the fact that at the outset a certain linear representa-
tion of the solution R is adopted, which reflects the linear
dependence of fhe output on the size of the system. For
example, in the case of problem (1.1.4) this representation
is assumed to be

(1.1.5) R(x,y) = R(x)y,

where R(x) is an m x n matrix and y the input vector at x.

However, for infinite dimensional spaces - the setting for
problems B and C - the validity of representations analogous
to {(1.1.5) is very difficult to prove. This, of course, is

added to the disadvantage stated in the introduction, namely

that rather diverse derivations of the imbedding equations

for problems A, B, and C appear to be necessary, if a size

perturbation is used. Finally, no size perturbation is known

to treat non-linear problems analogous to problems B and C.
In this presentation we shall describe how the theory

of characteristics leads to a unified theory for the conver-

sion of boundary value problems which can be applied to prob-

ol Obh 68 AN - a0 a5 aw o a

lems A, B, and C alike and even to certain non-linear problems,

" and which yields imbedding equations without assuming a priori
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a special representation of the solution. This approach
does not seem to have been used before. We were led to it
through the observation made by Wing in [22], namely that
the given ordinary differential equations of the two point
boundary value problem are the characteristic equations of
the corresponding imbedding equation. However, in the same
article, Wing suggests that an entirely different interpre-
tation of the perturbation appears to be needed, before this
observation could ever be applied to two point boundéry value
problems.

In our approach we shall not reinterpret the size pertur-
bation technique; instead we shall imbed the given boundary
value problem into a class ¢f initial value problems and then

apply the theory of characteristics to derive the imbedding

equation. Eventually, this approach will be used to find

the imbedding equatioh for abstract two point boundary value
problems defined on arbitrary Banach spaces. For this, the
theory of characteristics in an infinite dimensional space

will be required which, however, is not readily available.

In order to describe the underlying idea of the new approach,
we shall present here the method for the one dimensional trans-

port model leading to problem A, because in this case only the

- classical theory of characteristics for a single first order
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partial differential eqguation is needed. The generalization
of the method and its application to abstract boundary value

problems will then be given in chapters 2 and 3.

1.2. The Characteristic Theory Approach. For ease of

reference the basic features of the theory of characteristics
for a single first order partial differential eguation shall
be summarized first. This discussion follows Courant & Hilbert,
vol. II ([8], pp. 62-69).

Consider the equation
(1.2.1) ux(x,y)a(x,y,u) + uy(x,y)b(x,y,u) = C(x,y,u),
where a, b, and c are continuously differentiable on some open
domain D:E3, and suppose that a2 +'b2 # 0 in D. A continuously
differentiable surface u(x,y) satisfying (1.2.1) and belonging
to D is called an integral surface of (1.2.1). Moreover, such
a surface can be constructed with the help of the so-called

characteristic equations.

Definition 1.2.1l: A characteristic curve - or a '"char-

acteristic" for short - of equation (1.2.1) is an integral

{x(t),y(t),u(t)} of the characteristic equations

x'(t) = a(x,y,u)
y'(t) = b(x,y,u)
u'(t) = c(x,y,u)
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with the property that (x,y,u) ¢ D. Here, t is a parameter
varying along the characteristic curve. The projection of
a characteristic onto the x-y plane, i.e. the curve {x(t),y(t)},
is called a characteristic base curve of (1.2.1).

The characteristic equations define a direction field
on D whose diréction at any point P ¢ D is given by the so-
called Monge axis through P. The direction numbers (dx:dy:du)
of this axis evidently satisfy dx:dy:du = a(P):b(P):c(P), and
this implies that any surface w which is tangent to the direc-
tion field at each of its points must satisfy (1.2.1). 1In
fact, the normal of w and the Monge axis through each point
on w are perpendicular, i.e.

w_dx + w dy - dw = 0,

X Y

or an(x,y,w) + wyb(x,y,w) = c(x,y,w).

A surface generated by the characteristic curves automatically

satisfies this conditions and is, therefore, an integral sur-
face. Conversely, if u(x,y) is an integral surface, then a
one parameter family of curves x = x(t), v = y(t), u = u(t)

can be defined by

x'(t) = a(x,y,u(x,y)):;y"'(t) b(x,y.,u(x,y)).

Along such curves (1.2.l1) assumes the form

u'' = ux'+uy'=ua+ ub-=c,
x Yy X Yy

and hence these curves are characteristic. These results can
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be summarized by quoting ([8] p. 63):

Theorem 1.2.1: Every surface u(x,y) generated by a one

parameter family of characteristic curves is an integral sur-
face of the partial differential equation. Conversely, every
integral surface u(x,y) is generated by a one parameter family
of characteristic curves.

Without further restrictions, equation (1.2.1) may admit
uncountably many integral surfaces; however, the solution to
the Cauchy problem for (1.2.1), if it exists, usually is unique.
Such a problem can be formulated as follows: Find a surface
u(x;y) which satisfies (1.2.1) and passes through a given
curve CcD - the so-called initial manifold. The next theorem
applies to this problem (see again [8], p. 66).

Theorem 1.2.2: Let the initial manifold CcD be given

parametrically by x = x(s), y = y(s), u = u(s), then the

initial value problem

uxa(x,y,u) + uyb(x,y,u) = c(x,y,u)
u(s) = u(x(s),y(s))

has one and only one solution in some neighborhood N of C if

the Jacobian A XY - X Y, does not vanish along C. If,
however, & = 0 along C, the initial value problem cannot be

solved unless C is a characteristic curve, and then the prob-

. lem has inifinitely many solutions near C.
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Following is a brief outline of the proof for the case
when A # 0 along C. In this case the characteristic through
each point of the initial manifold C is obtained by integrat-

ing the initial value problem

x' = a(x,y,u), x(0) = x(s)
y' = b(x,y,u), y(0) = y(s)
and u' = c(x,y,u), u(0) = u(s).

Let {x(t,s),y(t,s),u(t,s)} be the resulting family of charact-

eristic curves. IfAls= Xy, - XY, # 0 on CcD, then by the
implicit function theorem the inverse functions s = s(x,y), t =(x,y)
exists in some neighborhood N of C. By substituting

these functions into u(t,s) we obtain u as a function of x

- A

and y. ITn N' 11 Wl1l antr1afr

u' = ux'

+ uvy', or

c(x,y,u) = uxa(x,y,u) + uyb(X,Y,u).
Moreo&er, the construction certainly assures that u(x,y)
passes through C.

For a more thorough geometric discussion, including the
case when A = 0, and some examples we refer to [81. 1In chapter
2 this theorem shall be generalized to apply to a more general
Cauchy problem.

These results from the theory of characteristics can now

- be used to present the new derivation of the imbedding equation
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for problem A:

u'(t) = F(t,y,u), ula)

o

y'(t) = 6(t,y,u), y(b) = R,

We shall assume that F and G are continuously differentiable
on some domain D in t-y-u space, and that problem A has a
unique solution.

As shown in 1.1, Wing [22] imbeds problem A into the class

of boundary value problems

u'(t) F(t,v,u) u(a)

o

v'(t) G(t,v,u) v(x)

Y
and from this formulation the imbedding equation (1.1.3) is
derived. 1In contrast, in our approach we shall imbed problem

A into the following class of initial value problems:

o

u'(t) F(t,y,u) u(a)

G(t,y,u) y(a) s.

y'(t)

'For each initial value (a,s,a) € D this problem has a unique

solution. In numerical analysis a trial and error search

for the particular initial value (a,so,a) which is consistent
with y(b) = 8 is generally called a "shooting method". Here,
however, we are not interested in a direct search for (a,so,a);
rather we shall interpret the equations u' = F and y' = G as

characteristic equations of some partial differential equation.

For that purpose, let us add a third equation by setting x = t,
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and write the initial value problem of the shooting method
in the form

(1.2.3) u'(t)

= F(t,y,L'l) u(a) = o
y'(t) = G(tly:u) y(a) = S
X =t x(a) = a.

The outline of the proof for theorem 1.2.2 then shows that
integrating (1.2.3) corresponds exactly to generating the
surface u(t,y) for the partial differential equation
ut(t(y) + uy(t,y)G(t,y,u) = F(t,y,u)
through the initial manifold u(a,y) = o. Moreover, since

the Jacobian O = XY, - XY

Y equals unity along C, theorem

1.2.2 assures that the integral surface exists near C.

Conversely, let u(t,v) be an integral surface which be-
longs to D and which passes through the initial manifold
u(a,y) = o. Suppose further that the characteristic through
(b,R,u(b,B)) remains on u(t,y) for t ¢ [a,b]; then this curve
certainly satisfies its characteristic equations

u'(t) = F(t,y,u) and y'(t) = G(t,y,u)

and the initial conditions u(b) = u(b,R), y(b) = f. And
since it remains on u(t,y), the boundary condition u(a) = «
has to hold as well. In summary, we can thus conclude:

The desired value u(b), which transforms problem A into

_a Cauchy problem with the initial value given at t = b, can



be found by solving the imbedding equation
(1.2.4) u (t,y) + u (e y)Glt,y,u) = Flt,y,u)
u(a,y) = o

and by setting u(b) = u(b,r).

This conclusion is identical to that for the method
of invariant imbedding. Moreover, the surface generated

with the shooting method is easily visualized, as Fig. 1

shows .

20

Fig. 1 - Imbedding of the solution curve u(t) into the
surface generated by the shooting method
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A similar approach can be used to find y(a) for problem
A. In this case we assume for (1.2.3) the initial conditions
t(b) = b, y(b) = B, u(b) = s, and generate the integral sur-
face y(t,u) -for

yt(t,u) + yu(t,u)F(t,y,u) = G(t,y,u)

through | y(b,u) = B,

The desired solution is y(a,o). In fact, the characteristic
curve through (a,y(a,o),o) ¢ D satisfies its characteristic
equations u'(t) = F(t,y,u) and y'(t) = G(t,y,u)

and the initial condition u(a) = o. Furthermore y(b) = 8,

because this characteristic must remain on y(t,u) for t e [a,bl.

A different approach for finding y(b) is suggested in [22].
‘fhere, Wing shows that once the sclution ul{t,y) of {(1.2.4) is
known, then the value y(a) can be obtained from the Cauchy
problem
(1.2.5) Tt(t,y) + Ty(t)y)G(t,y.u(t,y)) =0

T(a,y) = vy,

by setting T(b,R) = y(a). Equation (1.2.5) is derived in [22]
by arguments similar to those of section 1.1; however, it can
also be obtained by using characteristic theory, as the follow-

ing discussion shows.

Let us assume that u(t,y) is an integral surface of (1.2.4),

- then we want to find some so such. that the solution y(t) of



y'(t) = G(t,y,u(t,y)), y(a) = s_
satisfies y(b) = R. First of all, it should be noted that
the solution Yy of
(1.2.6) - y'(t) = Glt,y,ult,y)), y(b) = R
exists and is unique, because G and u were assumed to be
continuously differentiable. Secondly, if {yz(t),u(t)} is
the characteristic of (1.2.4) through the initial value
(R,u(b,R)), then Y, also satisfies (1.2.6), because along
this characteristic G(t,yz(t),u(t)) is equal to G(t,yz(t),u(t,y2
Since the solution of (1.2.6) is unique it now
follows that Y, = ¥;- Hence any solution of (1.2.6) is also
a solution of the characterisﬁic equatién y' = G(t,y,u).

Consider next the imbedding of (1.2.6) into the class

of initial value problems

T'(t) =0 T(a) = s
yl(t) = G(tlylu(t:Y)) Y(a) = S
X = t.

From the proof of theorem 1.2.2 we know that these equations
describe a surface T(t,y) satisfying

Tt(t,y) + Ty(t,y)G(t,y,u(t,y)) =0
and passing through T(a,y) = y. Furthermore, T(t,y) remains

constant along any characteristic base curve {t,y(t)}. There-

fore, along the particular characteristic {t,y(t),T(t)} through

(£)))
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(b,R,T(b,R)) we obtain

y'(t) = G(t,y(t),u(t,y(t))) = G(t,y,u)

T(a) = T(b,R) = y(a).
It should be pointed out that regardless of the form of F and
G, problem (1.2.5) will always be linear in T. This property
is particularly useful for numerical work; see, for example,
([221, p. 89).

For ease of exposition and for comparison with Wing's

results, we have discussed here only the boundary value
problem A, but nothing new is added if we consider the more

general class of problems:

(1.2.7) ar () = Flt,y,u)  ula) = £(y(a))

v'(t) G(t,v,u) v(b) = g(u(b)),

where also f and g are assumed to‘be continuously differenti-
able. Again we can use the shooting method and impose the
initial conditions
u(a) = f£(s), y(a) = s.
In this way, we generate the surface u(t,y) which satisfies
u, + uyG(t,y,u) = F(t,y,u),
and which passes through u(a,y) = £(y). Let us now suppose

that the integral surface exists in a sufficiently large

domain, in which the equation y = g(u(b,y)) has at least

~one fixed point Y, - If the characteristic {t,y(t),u(t)}
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through (b,yo,u(b,yo)) remains on u(t,y) for all t ¢ [a,b],
then it solves problem (1.2.7). The geometric interpreta-

tion of this imbedding surface is given in Fig. 2.

Fig. 2 - The imbedding surface for problem (1.2.7).

1.3. Linear Problems. In the case of linear boundary

value problems the partial differential (imbedding) equation
(1L.2.4) can be reduced to a pair of ordinary differential

equations. In order to illustrate this, let problem A be

'given in the form
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(1.3.1) u'(t) = a(t)u + b(t)y u(a) = «o

y'(t) = c(t)u + d(b)y y(b) = 8,
where a, b, ¢, and d are assumed to be differentiable on
some domain D> [a,b]. Without loss of generality we can
assume that [a,b] is the interval [O,tl]. Problem (1.3.1)
is now imbedded into the class of initial value problems
(1.3.2) u'(t) = a(t)u + b(t)y u(0) = «o

y'(t) = c(t)u + d(t)y v(0) = s
The results of the previous sections apply and we obtain
the Cauchy problem
(1.3.3) ut(t,y) + uy(t,y)[c(t)u + d(t)yl= a(t)ul(t,y) + b(t)y

u(0,y) = «,

where u(tl,ﬁ) is the desired initial wvalue for (1.3.1). On

the other hand, problem (1.3.2) has the explicit solution
u(t) o
= ¢(t,0)
y(t) A s/,
where C(t,r) is the fundamental matrix of the linear system
(1.3.2), and where, as usual, Cij(t,t) = éij' In component

form the solution of (1.3.2) can then be written as

u(t) C..(t,0)a + C12(t'0)s

11
y(t) C21(t,0)a + C22(t,0)s.

Solving for s = s(t,y) we find, at least in some neighborhood

.of the initial manifold u(0,y) = «, that
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s =¢C. Y, 0y -c

-1
22 (tIO)C2l(t,O)C(7

22
hence
_ -1
-1
5%, CZl]a.

. _ -1 B 1
Setting u(t) = €;,(t,0)C,, " (t,0) and h(t) =fc;; - c.. la

| €12%2 €3]
we obtain the representation
(1.3.4) u(t,y) = u(t)y + h(t)
for the solution of the imbedding equation (1.3.3). Substitu-
tion of this representation into (1.3.3) then leads to

u'(t)y + h'(t) + u(t) [c(t)ult)y+ c(t)n(t) + a(t)y]

= a(t)u(t)y + a(t)h(t) + b(t)y,

or [u' + ucu + ud - au - b] y = -h' - uch + ah.
Since this equation has to hold for all y, including ithe case
when vy = 0, both sides have to vanish, and hence
(1.3.5) u' + ucu + ud - au - b = 0

h' + uch - ah = 0
hold. Moreover, because of Cij(0,0) = 6ij the initial con-
dition yields u(0) = 0, h(0) = . Thus, (1.3.3) has been
reducea to (1.3.5). Conversely, if u(t) and h(t) satisfy
(1.3.5), then differentiation shows that u(t,y) = u(t)y + h(t)

is a solution of (1.3.3), which by theorem 1.2.2 is the only

solution. The first, non-linear, equation of (1.3.5) is

-known as the (scalar) Riccati equation. We shall be concerned
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with more general Riccati equations in chapters 2 and 3, where
abstract linear boundary value problems are discussed in detail.

In {3] Bailey and Wing discussed a different linear bound-
ary value problem of the form

(1.3.6) u'(t)

a(t)u + b(t)y u(0) =0

‘y' (t)

c(t)u + d(t)y u(tl) = 1,

using the concept of size perturbation. Suppose this problem
admits a solution; then there exists an initial value y(0) = 5,
such that the corresponding solution u(t,so) satisfies

u( ) = 1. Thus, the shooting method can be applied, and

to.
1'%
the above discussion of linear boundary value problems shows

that we have to solve the initial value problem for the Riccati

equation

u' + ucu + ud - au - b = 0

u(0) = 0.
If the solution of this equation exists on [O,tl] where u(tl) £ 0,

then the 1line u = u(tl)y and the plane u = 1 intersect

1
u(tl)

through the point of intersection (tl,yo,l) in t-y-u space

. The characteristic {t,y(t),u(t)}

then solves the boundary value problem (1.3.6). Fig. 3 gives

a geometric interpretation of this method.
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Fig. 3 - The imbedding surface for problem (1.3.6)

1.4. Limitations of the Imbedding Method. Theorem 1.2.2

assures the existence of a unique integral surface u(t,y) for
(1.2.4) in a neighborhood of the initial manifold C, and the

following examples show that even for a simple linear problem

& P

this neighborhood may be too small to allow an application of

' the imbedding method in order to solve two point boundary value
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problems.
Consider the linear system

(1.4.1) u'(t)

Y

y'(t)

-u,
which possesses the fundamental matrix

cos t sin t

C(t,0) =

: -sin t cos t/.

The Cauchy problem for (1.4.1) with the initial value

u(0) = o, y(0) = s then has the unigue solution

(1.4.2) (u(t))= clt.0) (oz)
y(t) s /.

Let us choose three different sets of béundary values for
these linear equations.

Example a: u(0) = o, y(%) =B, o + R # 0.
For any initial value s the equation (1.4.2) yields

um) = s, y(3) = -a

Since o + R # 0 it follows that no solution of (1.4.1) can
satisfy the boundary conditions of example a.

Example b: u(0) = o, y(%) = R o+ R =0,
The discussion of example a shows that system (1.4.1) admits
uncountably many solutions satisfying the boundary conditions

of example b, for in this case s can be chosen arbitrarily.

Example c: u(0) = 0, y(b) = R.




® O @O W oo e dh T g W M G5 G R W g E W8

30

Let us use the imbedding equation (1.2.4) and generate its
solution by eliminating s from u(t,s) in (1.4.2). A simple
calculation shows that u(t,y) = y tan t is the solution of

the imbedding equation ut(t,y) - uy(t,y)u = y through u(o,y) = O.
It follows, therefore, that u(t,y) = « as t - %. Hence the
imbedding method will yield a solution only if b < E, whereas

from (1.4.2) it can be seen that (1.4.1), together with the

boundary values of example c, possesses a unique solution

£ (2n+1)m

whenever b > . In transport theory the length

(b-a) = % for this problem is called critical. The physical
sigﬁificance of critical intervals is discussed in [21].

These examples show the limitations of the present methods
r transforming a boundary value problem into a Cauchy problem.
If the given boundary value problem admits a solution for the
interval [a,b], then a solution has to exist for all intervals
(a,c], a < ¢ < b. If the interval exceeds a critical length,
our method generally fails although the boundary value problem
still may have solutions. Furthermore, as theorem 1.2.2 shows,
the solution of the Cauchy problem (1.2.4) may exist only in a
neighborhood of the initial manifold, and hence may not form

a surface-strip big enough to allow a numerical integration

of the partial differential equation by difference schemes

‘with constant mesh size. Linear problems do not show this
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defect, because in that case the existence of the surface is
determined by its t-dependence only.

Our approach to the scalar boundary value problem A
allowed a simple geometric interpretation (see Fig. 1). For
more complicated multi-dimensional problems, such as problem
(1.1.4), the method of section 1.2 can still be applied, where
now the theory of characteristics for a first order partial
differential equation with the same principal part (see
Courant & Hilbert, vol. II [8], pp. 139-142) must be used.

The géometric interpretation, however, will be lost,

We shall not use this finite dimensional theory; instead,
we shall next consider abstract boundary value problems of
the form
(1.4.3) u'(t)

F(t,y,u) u(a) f(y(a))

G(t,y,u) y (b)

y'(t) g(u(b)).

I

Here, u and y denote abstract functions mapping an interval

on the real line into certain infinite dimensional Banach
spaces, and F, G, £, and g are suitable functions also defined
on theée Banach spaces. The theory presented in the next
chapters will permit us to derive the imbedding equation for

problems B and C.
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CHAPTER 2

ABSTRACT TWO POINT BOUNDARY VALUE PROBLEMS

IN A BANACH SPACE

In this chapter we shall apply the ideas of section 1.2
to find the imbédding equation for abstract boundary value
problems. For this we shall need a generalized theory of
characteristics which is presented in 2.1. The next section
contains the derivation of the imbedding equation, and in 2.3
the maiﬁ theorem of this chapter gives some information about
the solvability of the imbedding problem. Then, in section
2.4, this theorem is applied to yield some sufficient con-
ditions under which the original boundary wvalue prcklem has
a unique solution. Linear equations are treated in section

2.5, and these results are applied to problem B in 2.6.

2.1. The Theory of Characteristics in an Arbitrary Banach

Space. The concept of characteristics in an infinite dimen-

sional linear space is not new. In 1960 Manninen {197 con-

sidered the following Cauchy problem from a functional analytic

point of view:
(2.1.1) H(x,z'(x)) =0

z = n(t) when x = u(t).

32
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P

Here, H: D C Rx X RX' - R" 1s a twice differentiable operator

defined on some domain D, RX is a reflexive Banach space,
RX' its dual, and Rp
more, the functions mn and p are assumed to be three times
differentiable for t ¢ D' C Rx’ where D' is a certain subset
of Rx' From this operator H, Manninen derives the character-
istic equations which, for p > 1, turn out to be abstract
total differential equations. Under additional assumptions
on the initial manifold he then succeeds in generating an
integral surface to (2.1.1) in a sufficiently small neighbor-
hood of the initial manifold. Manninen also points out that
the more general operator F(x,z'(x),;(x)) can be transformed
into Lhe type regquired
Our problem will be somewhat different from (2.1.1).
We are interested in the equivalence between two abstract
ordinary differential equations - considered as character-
istic equations - and the corresponding imbedding equation.
For the application of this imbedding equation to transport
problems; it is essential that its characteristics are de-
fined on arbitrary Banach spaces, and not only on reflexive
spaces. Therefore, Manninen's theory is not immediately

applicable. But while it appears to be possible to extend

his results to arbitrary Banach spaces when the operator H

is a p-dimensional linear space. Further-



is given by our imbédding equation, we shall not choose

that approach. Instead, we shall present a direct proof of

the desired equivalence, which is motivated by the geometric
interpretation of characteristics given in 1.2. The Cauchy

problem for the imbedding equation will then be solved with

the method outlihed by Manninen. Again, only arbitrary in-

stead of reflexive Banach spaces are required for our parti-
cular problem.

Throughout this chapter we shall make extensive use of
the theory of abstract differential equations defined on an
arbitrary Banach space, and for reference purposes a short
survey of the basic theorems needed is given below. Our
exposition follows Dieudonne' [10].

Let us first introduce the notation used subsequently:
X and Y shall always denote arbitrary Banach spaces, and I
is an open interval on the real line. Furthermore, let the
operator P: D, € X =Y be Frechet differentiable (see [10],
VIII) on the domain DX — X; the Frechet derivative of P at
X € Dx will be written as Px(x). If L(X,Y) is the Banach
space of bounded linear operators from X to Y, then, of cour
Px(x) € L(X,Y). Finally, since it will always be clear what
particular Banach space we are considering, no confusion

should arise if all norms are simply expressed as .

34
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Using this notation we can then give

Definition 2.1.1: Let f be a continuously (Frechet)

differentiable mapping from I x DX - X. Then a differentiable
mapping u of an open ball J € I into DX is called a solution
of the abstract ordinary differential equation

x' = f(t,x),
if for any t ¢ J we have u'(t) = f£(t,u(t)).

The question of existence and uniqueness of solutions

for such differential equations is taken up next.

Theorem 2.l.1: Suppose that f is continuously dif-

ferentiable on I x D_, then for any point (a,b) ¢ I x D

X X

a) there is an open ball J © I of center a and an open

ball VX s DX of center b such that

(to’xo) in J x VX there exists a unique solution
t - u(t,to,xo) of x' = £(t,x) defined in J, which
takes on values in DX and which has the property
that u(to,to,xo) = X

b) the mapping (t,to,xo) - u(t,to,xo) is continuously

differentiable in J x J X V-

The proof of theorem 2.l.l1 is given in Dieudonne' . In
short, part a) is proved by showing that for sufficiently
small |t - to| the Banach-Cacciopoli theorem ([157, p. 630)

can be applied to the initial value problem in its integral
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representation, namely

t
u(t,t ,x ) = x + f(r,u(r,t ,x )dr.
o’'"o o Lg o' "o

From this theorem one obtains a unique local solution u
which depends continuously on the initial value (to,xo). It
should be noted that this proof also holds if £ is continuous
in t and uniformly Lipschitz-continuous in x (see [10], X).

For part b) one shows that u (t,to,xo) and u

to (t,to,xo)

X0
are the solutions of certain linear differential equations,
to which part a) applies.

As in the finite dimensional case, all solutions of
the linear equation
(2.1.2) x' = A{t)x,
where A(t) ¢ L(X,X) is continuous in I, form a subspace SX(I)
of the space CX(I) of all continuous abstract functions from
I to X. This subspace can be found with the aid of

Theorem 2.1.2: For each initial point (r,xo) e I xD

X

let t ~ u(t,r,xo) be the unique solution of x' = A(t)x defined
in I and'such that u(r,r,xo) = X
a) For each t ¢ I the mapping X~ u(t,r,xo) is a linear
homeomorphism C(t,r) ¢ L(X,X) of X onto itself.
'b) The mapping t - C(t,r) of I into L(X,X) is a solu-

tion of the linear homogeneous differential equation

U' = a(t)°u,
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and for t = r, C(r,r) = IX, where IX is the identity
in L(X,X).
c) For any three points r, s, t in I
c(r,t) = C(r,s)OC(s,t) and C(r,t) = c(t,r) L.
Theorem 2.2 is proved by showing that the mapping
X, ~ u(t,r,xo) is linear. This mapping then is denoted by
c(t,r). In the remainder of the proof the properties a),
b), and c¢) are verified. Moreover, it is shown in [10] that
the mapping (t,r) - C(t,r) of I x I into L(X,X) is continuous.
Therefore, the solution space SX(I) of (2.1.2) can be ex-

pressed as

SX(I) = U C(t,s)X c CX(I).
Sel

Next, a straightforward differentiation proves that for
b(t) ¢ CX(I) the initial value problem
x' = A(t)x + b(t), x(to) = x

o

has the (necessarily unique) solution

t
ult) = c(t,t )x_ + j c(t,r)b(r)dr.
(@] (0] tl

Furthermore, from C(t,r)oC(r,t) = I follows that

n

[C(t,r)OC(r.t)x]r Cr(t,r)OC(t,r)x + C(t,r)ocr(t,r)x

[Cr(t,r) + C(t,r)%A(r)]c(r,t)x,
and, therefore, that

(2.1.3) Cr(t,r) = -C(t,r)CA(r).
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When X is finite dimensional, C(t,r) is known as the funda-
mental matrix. In arbitrary Banach spaces C(t,r) is called
the resolvent of (2.1.2).

As will be shown later, the imbedding equations usually
admit solutions in a neighborhood of the initial value. 1In
practice, howevér, solutions over a given domain are of in-
terest, and the next theorem shows that a continuation of
the local solution is occasionally possible in a Banach space.

Theorem 2.1.3: Let f be continuously differentiable on

I X DX. Suppose u is a solution of x' = f(t,x) defined in

an open ball J: \t - tol < r, such that u(J) < DX and that
t - £(t,u(t)) is bounded in J. Then there exists a ball

J': jt -t | < r' contained in I with r < r' as well as a

ol
solution of the differential equation defined in J' and coin-
ciding with u in J.

The proof is identical to that for the finite dimensional
case. First it can be shown that the solution exists on the
closed interval E, and then the existence theorem 2.1.1 is
applied fo continue the solution in a neighborhood of the
end points of J.

Finally, since the implicit function theorem plays an

important part in constructing the imbedding surface, this

theorem shall also be stated.




Theorem 2.1.4: Let X, Y and Z be three Banach spaces,

and f a continuously differentiable mapping from an open

set Ac X x Y into Z. Let (xo,yo) be a point of A such that
f(xo,yo) = 0 and that the partial derivative fy(xo,yo) is a
linear homeomorphism of Y onto Z. Then there exists an open
neighborhood UO bf X in X such that, for every open con-
nected neighborhood U of X contained in Uo’ a unique con-
tinuous mapping u from U into Y can be found for which

u(xo) =Y (x,u(x)) ¢ A and f£(x,u(x)) = 0 for any x ¢ U.
Furthermore, u is continuously differentiable in U, and its

derivative is given by

u'(x) = fy(x,u(x))_lfx(x,u(x)).

For the well known proof we refer again to Dieudonne

(a
l-l
(@]
'

At this time the concepts of characteristic theory re-
quired for the imbedding method can be introduced. For this
purpose we consider the following partial differential equa-
tion for the function u: J x DY cIxY-~ DX C X:

(2.1.4) ut(t,y) + uy(t,y)G(t,y,U) = F(t,y,u),

where F and G are assumed to be continuously differentiable
on J x DY X DX. In analogy with the finite dimensional case

we formally associate with (2.1.4) the characteristic dif-

ferential eguations

39
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(2.1.5) X =t
y'(t) = G(t,y,u) (t,y,u) ¢ J x D, X D.
u'(t) = F(t,y,u)

The next theorem proves that (2.1.4) and (2.1.5) are equiva-
lent; this generalizes the result of Kamke for finite dimen-

sional vector spaces ([147, p. 330) to arbitrary Banach spaces.

Theorem 2.1.5: Let w: J x DY - DX be continuously dif-
ferentiable. Then w is an integral surface for (2.1.4) if
and only if w - u = 0 along each characteristic {t,y(t).,u(t)}
in J x DY X DX'

Proof: Assume w(t,y) is an integral surface of (2.1.4),
and let (to,yo,wo) be a point on this surface. Since the
chain rule holds for Frechet differentiation in a Banach
space (see [107, VIII), the function G(t,y,w(t,y)) is con-
tinuously differentiable in J x Dy. Therefore, by theorem

2.1.1 a unique solution y(t,to,yo) of

v'(t) = G(t,y,w(t,y)), y(to) =Y,

exists near Y- By hypothesis w satisfies (2.1.4), and the
chain rule yields

W'(t.y(t,to,yo» = wt(t,y(t,to,yo» + wY(t,y)G(t,y,W) = F(t,y,w).

Hence {t,y(t)w(t)?}l is a characteristic. Conversely, if

{t,y(t),u(t)} is a characteristic such that w = u = 0 ¢ X
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holds i i hood
s in a neighborhood N of (to,yo,w(to,yo)) e J X DY X DX'
then in N we have

w(t,y(t)) - u(t) = 0.

Differentiation and substitution of the characteristic equa-

tions now leads to

wt(t,y) + wY(t,y)y'(t) = wt(t,y) + wY(t,y)G(t,y,W) = F(t,y.,w).

Hence w(t,y) satisfies (2.1.4) in N.

Theorem 2.1.5 is the exact analog of theorem 1.2.1; more-
over, since the solution to the characteristic equations is
unigque, it follows that a characteristic lies entirely on
the integral surface, if it has at least one point in common
with this surface.

The characteristic curves can now be used to generate

the integral surface uf{t,y) for (2.1.4) through a ven ini-

Q
=

tial manifold, and we shall state and prove the analog of
theorem 1.2.2 for equation (2.1.4).

Theorem 2.1.6: Let the initial manifold C ¢ J x DY X DX

be given parametrically by {t =a, vy =s, u=£f(s)}, where £
is continuously differentiable on Dy. Then the Cauchy problem
(2.1.6) ut(t,y) + uy(t,y)G(t,y,u) = F(t,y,u)

u(a,y) = £(y)

has one and only one solution in some neighborhood N of C.
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Proof: By theorem 2.1.1 a unique solution {t,y = y(t,s),
u = u(t,s)} of the characteristic equations through a given
point (a,s,f(s)) e C exists. Moreover, it is continuously
differentiable with respect to s in some neighborhood
J x V X V of (a,s,f(s)). Then the function

S Y,s X,s
h: JS X VY,S X VY,s CI XY XY -Y defined by h(t,y,s) =
y - y(t,s) is also continuously differentiable on its domain.
By hypothesis h(a,s,s) = 0 and hs(a,s,s) = I, where I is the
identity mapping on Y. The implicit function theorem now
yields a neighborhood Us c Js b4 Vf,s around (a,s), in which
a unique function s = s(t,y) exists with the property that
h(t,y,s(t,y)) = 0 for (t,y) e US. Over US the substitution
of s = s{t,y) intc u - u{t,s) generates a sur
with values in VX,s' Since f(s) and s(t,y) are both continu-
ously differentiable, the same is true for u(t,y) over Us'
Furthermore, the chain rule can be applied in
N =sgc (US X VX,S) cJ x DY X DX to yield

u'(t) = (t,y) + uy(t,y)G(t,y,u) = F(t,y.,u).

Yt
Hence u(t,y) satisfies the partial differential equation, and
the construction assures that u(t,y) passes through the ini-

tial manifold C. Therefore, it is the desired integral surface

of (2.1.6).
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2.2. The Derivation of the Generalized Imbedding Equa-

tion. Theorems 2.1.5 and 2.1.6 allow us to develop the im-
bedding method for abstract two point boundary value problems,
and we shall generalize the approach of chapter 1 in order

to treat the following problem:

(2.2.1) u' (t) £(y(a))

F(t,y,u) u(a)

g(u(b)).

y'(t) g(t,y,u) vy (b)

Here F and G are assumed to be continuously differentiable

on some domain J X DY X DX c I XY x X and to take on values

in DX and Dy, resp. We suppose, of course, that J o [a,b1.

’ i f: - H - 1
Moreover, the functions DY DX and g DX DY shall

also be continuously differentiable. As in chapter 1 we

-

. . - [ PR SR, TR I I +
want to derive Lhie 1MoOeQdir caticn correspo

g egu n
(2.2.1), which will allow us to find the value {y(b),u(b)},
and thus to transform (2.2.1) into an initial value problem.
At present, only the method is of interest to us, and questions
concerning the existence of the solution will be deferred to
later sections.

Again, problem (2.2.1) is imbedded into a class of ini-

tial value problems by means of the shooting method:

F(t,y.u) u(a) f£(s)

(2.2.2) u'(t)

y'(t) = G(t,y.,u) y(a) = s for s ¢ D_.

The proof of theorem 2.1.6 shows that integration of (2.2.2)
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and elimination of the parameter s corresponds exactly to
generating an integral surface u(t,y) to (2.1.6) in a neigh-
borhood of the initial manifold u(a,y) = f(y). Let us now
assume that this surface exists over a sufficiently large
domain J x D,/ that in J x D, the equation y = g(u(b,y)) has
at least one fixed point Yo and finally, that the character-
istic {t,y(t),u(t)} through (b,yo,u(b,yo)) remains on u(t,y)
for all t ¢ [a,b]. Then the solution of (2.2.1) can be

found from the initial value problem

u'(t) F(t,y,u) u(b) u(b,yo)

y'(t) G(t,y,u) y (b) Y

for the solution of this problem is a characteristic, which

remains on the surface u(t,y) and hence satisfies u(a) = f(y(a)).

This discussion is summarized in the following

Theorem 2.2.1: Problem (2.2.1) has a solution

{y(t),u(t)} ¢ Y x X if the integral surface u(t,y) for
(2.1.6) ut(t,y) + uy(t,y)G(t,y,u) = F(t,y,u)

through u(a,y) = £(y)

exists in some domain D € J x DY X DX such that y = g(u(b,y))

has a fixed point Y, € DY’ and such that the characteristic

{t,y(t),u(t)? through (b,yo,u(b,yo) remains on the surface

u(t,y) for all t ¢ [a,b]. This characteristic will then be the
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solution of (2.2.1).

Equation (2.1.6) will be called the generalized imbed-
ding equation for the boundary value problem (2.2.1). 1If
u and y are scalar instead of abstract functions, these re-
sults reduce to those of section 1.2.

It should be observed here that the generalized imbedding
equation for problem (2.2.1) was derived rigorously using only
differentiability assumptions and domain restrictions for F,
G, £, and g:; therefore, it is applicable both to linear as
well as to non-linear problems. On the other hand, theorem
2.1.6 shows that the Cauchy problem has a solution only in
a neighborhood of the initial manifold, whereas theorem 2.2.1
usually requires its existence over é strip fa.bl x D in
order to solve y = g(u(b,y)). In the next section additional
conditions are imposed on the initial value problem (2.2.1)

to allow a quantitative description of the domain of exis-

tence for the integral surface u(t,y).

2.3. The Solvability of the Cauchy Problem for the Im-

bedding Equation. It shall now be assumed that F, G, and £

are differentiable on the whole domain space and, further-
more, that their Frechet derivatives are uniformly bounded.

Under these conditions a theorem can be proved which extends
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to arbitrary Banach spaces the finite dimensional case con-
sidered by Kamke ([147, p. 335).

The proof of our theorem will need two well known lemmas,
which shall be stated first.

Lemma 2.3.1l: Let X be a Banach space, and let A e¢ L(X,X)

-1
and ||all < 1, then (I-A) exists and belongs to L(X,X).

Furthermore,

- Ly 1
e T

This lemma is occasionally called Banach's lemma and
may be found in ([1ll], p. 584). The next lemma is stated
for functions which have one-sided limits at each point of
their domain of definition. Such functions are called "re-
gulated” in ([ 10], VII).

Lemma 2.3.2: If in an interval [O,tl] the functions

u = 0 and v 2 0 are regulated, then for any regulated func-

tion w Z 0 on [O,tl] satisfying

t
w(t) = u(t) + L) v(r)w(r)dr
we obtain in [O,tl]
t t
w(t) = u(t) + f u(r)v(r)exp( L.v(s)ds)dr.
o

This inequality is known as Gronwall's inequality and

is derived in ([ 107, X). If, moreover, u(t)'is non-decreasing
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on [O,tl], then the weaker but simpler inequality

t
(2.3.1) w(t) Sult)exp( [ v(r)ar)
o
is frequently applied. Using these results the basic exis-

tence theorem of this chapter can be given.

Theorem 2.3.1l: Let F and G be continuously (Frechet)

differentiable on I x Y x X and take on values in X and Y,
resp. Suppose there exist constants a, b, c, and d such

that HFUH = a, HFyH = b, HGuH = ¢, and HGyH = d uniformly

on I X ¥ x X. Assume further that f is continuously dif-
ferentiable on X and satisfies nyH £i. If M= max {c,d}

and k is chosen such that for <2 g) e L(E2,E2) the inequality
\i(i ];D\‘l = k holds,

then for all t ¢ I with

(2.3.2) ost<t=%In(l+ —k )
(1 + i)M

and all y ¢ Y there exists an integral surface u(t,y) to

(2.1.6) ut(t,y) + uy(t,y)G(t,y,u) = F(t,y,u)

such that u(o,y) = £(y).

Proof: According to theorem 2.1.6 the integral surface
u(t,y) can be generated with the help of the characteristics
through the initial manifold. These characteristics can be

written as
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t
(2.3.3) u(t,s) = £(s) + j‘o F(r,y,u)dr
. ot
y(t,s) = s + L) G(r,y,u)dr.

By hypothesis all Frechet derivatives of F, G, and f are uni-
formly bounded, and the mean value theorem for Frechet dif-
ferentiable functions can be applied to obtain the following

estimates

A

\F(t,0,0)l| + aljul| + bliyll

|.

IF(t. vy, w

1A

le(t.y.w)!l = lla(t,0,0)]| + cliull + ally

Use of these inequalities in (2.3.3) leads to

(2.3.4) luterl = [l£es)] + thF(r,o,o)Hdr + jt(aHuH + plilylar
1 o
t t
lycerlf = sl + [ lle,0,0llar + [ tellul + allylhar.

A staﬁdard application of Gronwall's inequality to (2.3.4)
shows that, for given s ¢ ¥, [lu(t)l and lly(t)!l remain bounded
for t ¢ I. By theorem 2.1.3 the solution {u(t,s),y(t,s)} of
(2.3.3) can therefore by continued over the whole interval I.
Next, we shall prove that for t e [0,£) the implicit function
theorem can be applied to h(t,y,s) =y - y(t,s) in order to
obtain s = s(t,y). From the hypotheses and from theorem 2.1.1
it follows that h is continuously differentiable on I x Y x X;
furthermore, along each base characteristic {t,y(t)} of (2.3.3)

we have h(t,y,s) = 0. Therefore, it only remains to be shown
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that hs(t,y,s) = —ys(t,s) is non-singular for te [O,E).

Since differentiation of (2.3.3) yields

t
(2.3.5) u_(t,s) = £_(s) + L) (Fug + Py )ar

S

t
' = + :
ys(t s) I 'L (Guus + nys)dr

it follows from Banach's lemma that ys(t,s) is non-singular if

1 (cu + 6y dar] <1
o u's yys :

From the hypotheses we can estimate (2.3.5):

t
ENOBI I a B[ [lu 0]
< + dr
| l .
Iy ceosonll 1 e a/ll My .1
0
Gronwall's inequality then leads to
' - . . y kt
(2.3.6) (Nug(e.s)fl + liyg(eas)i) £ (1 + i)e™,
and this estimate implies that
t ., rE ke, oML+ i), kt
(2.3.7) | Io G u_ + nys)drH = M(L + i) j e dr = — (e -1)
= yl(t).

Hence Banach's lemma assures that ys(t,s) is non-singular if

0=t < %-ln(l + k

(1 + i)M)

I
>

Thus, along any solution {u(t,s),y(t,s)} of (2.3.3) the in-
verse function s = s(t,y) can be found if t ¢ [0,£). Substi-

tution of s = s(t,y) into u(t,s) then yields a solution u(t,y)
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of (2.1.6) in a neighborhood of each characteristic. However,
it remains to be shown that these neighborhoods cover the
domain [0,£) x Y. This will certainly be the case provided
that for an arbitrary given point (to,yo) ¢ [0,t) x Y there
exists an initial value s, € Y such that the characteristic
base curve {t,y(t)} through (O,so) passes through (to,yo).

This initial value has to satisfy the fixed point equation
to
(2.3.8) s =y, - L) G(r,y(xr,s),u(r,s))dr,

where u(t,s) and y(t,s) are given by (2.3.3). However, for

any s, and S, in Y we can use the chain rule together with

inequality (2.3.6) to derive

t
HF l[-G(r,y(r,s

I y)eulr.s,)) - Glr,y(r,s,),ulr,s,))]dr|

1A

1A

[E20e gl + e, Myl (lsy=s,0ax = v (e ) ls; =,
Since tO < t, we see that Yl(to) < 1, and therefore, that the
contraction mapping theorem applies to (2.3.8), which guarantees
a unique solution S, € Y. Hence (to,yo) lies on a characteristic
base curve, and u(t,y) exists over a neighborhood U of (to,yo).
Since (to,yo) was arbitrary in [0,%t) x ¥, the surface u(t,y)
exists everywhere over [O,E) X Y, which completes the proof

of theorem 2.3.1.

It should be noted that our proof can also be used to

calculate the missing initial value y(a) of problem (2.2.1)
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directly, provided (b - a) < £ and yv(b) = B, In this case
the initial value is found iteratively from
_g - - -
sn+l R JaG(r,y(r,sn),u(r,sn»dr, where s, is arbitrary
in Y and lim s_ = y(a). However, in order to find s it
n—o n n+l
is necessary to solve (2.3.3) for the initial value u(a) = f(sn),
y(a) = s -

If the space Y is a Hilbert space, then theorem 2.3.1
can be somewhat strengthened. We shall set D, = {y: v e v,

c >0, and |lyll = el and D, = {y: vy e Y, 0< a<c, |yl =a}

2

and prove

Theorem 2.3.2: Let F, G, and f satisfy the conditions

of theorem 2.3.1 on I x Dl X X, then there exists an in-

~

tegral surface u(t,y) to (2.1.8} through u{l,y) = £{y) which

“agn uwv,ys T By
is defined at least in the strip [O,ﬁ) X D2.

Proof: We shall find extensions of F, G, and f which
satisfy the conditions of theorem 2.3.1 on the whole space,

and which concide with the given functions when y e D

¢
First we set ¢ - o = § and then consider the function h: Y - Y
defined by
D
Y Y € >
h(y) =
L(c-se‘(\\yl\ -/ y v £D,.
liy ) 2

The domain of h is the whole space Y, and its range is Dl ) D2
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because Hh(y)H =2 ¢ for all y ¢ Y. Furthermore, h is continu-
ous, because h(y) =y when |lyll = «. But h is also continuously

differentiable on Y, for let us write

(2.3.9) h(y) = n(uly))y when y £ D,

where u: Y - R is defined by u(y) = llyll = r

and N: R - R is defined by n(r) = l.(c—ée_(r_a)/é).
r

Then h will be Frechet differentiable if the same holds for
w and n. Now, in a Hilbert space the norm is differentiable

and satisfies

furthermore,

(2.3.10) nr(r) = =

Hence h is differentiable for y £ D2, and the chain rule yields

h k = r) )JkK)y + n(r)k.
y(y) (n_( uy(y y tn
Since n(g) = 1, we see that for r = ¢
h (y)k = k.
v Y

Therefore, hy(y) is also continuous on Y. Finally, with the

aid of (2.3.10) we can reduce

I @Kl = ¢ KLy« akn @KLy + a0
* (.0 L w? —2(r-a)/
2 Y:k Y,k -2(r-o &
h ki = ) (1~ ) + .
I y(Y) | = n"(x > ) e

-2 (r-
But for r z ¢ it follows that n(r) =1 and e (r a)/éé 1.
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Furthermore, for HkH = 1 we know that 0 = liXAkli =1, and
r
hence for r z ¢ we obtain
2 - -
th(y)H = sup th(y)kH = max {n (r),e 2(x a)/é} = 1.

kll=1
In summary, we have shown that h(y), given by (2.3.9), is con-
tinuously differentiable on Y, equal to the identity mapping
on D2, and, moreover, that its Frechet derivative is uniformly
bounded by unity. Let us now define

Fl(t,y,u) = F(t,h(y),u), Gl(t.y,u) = G(t,h(y),u), and

£,(y) = £(h(y)),

then Fl’ Gl' and fl certainly fulfill the conditions of theorem

2.3.1 on I x Y x X. Therefore, a surface u(t,y) exists on

n

{O,E)‘x Y, which satisfic
+ =
ut(t,y) uy(t,y)Gl(t,y,u) Fl(t,y,u)

u(o,y) = fl(y)-

The restriction of u(t,y) to [o,£) x D2 then is the desired

solution of (2.1.6) on [0,t) x D2.
It should be noted here that while the surface u(t,y)

may exist over [O,E) x D., we no longer are assured that the

2
characteristic through a given point (to,yo,u(to,yo)) will

remain on u(t,y) for all t ¢ [O,E).




54

2.4, The Existence and Unigueness of Solutions for

Abstract Boundary Value Problems. Theorem 2.3.1 will now

be used to give a sufficient condition under which problem
(2.2.1) has a unique solution, which in turn can be found
by our imbedding method. As in the proof of theorem 2.3.1
let yl(t) = gu%;il(ekt - 1), then we can prove

Theorem 2.4.1l: Let the hypotheses of theorem 2.3.1

apply, and assume that the function g: X - Y is continuously
differentiable and has a uniformly bounded Frechet derivative

in X. Then for t. < £ the boundary value problem

1
u'(t) = F(t,y,u) u(o) = £(y(0))
y'(t) = G(t,y,u) y(tl) = g(U(tl))

always has a unique solution provided that

() = Qg ll(1 +BY 1lE1)y €21y g
L—yl\tl)

1~ A h)
L oSt oL v
\ ) 12 u

Proof: Since the hypotheses of theorem 2.3.1 hold, the
surface u(t,y) for ut(t,y) + uy(t,y)G(t,y,u) = F(t,y.,u)
through u(0,y) = f£(y) exists over the strip [0,£) x Y. Let
us show next that y = g(u(tl,y)) has a fixed point if (2.4.1)
is satisfied. Now for Yi/Y, € Y the mean value theorem and

the chain rule yield

(2.4.2) lgtute v 0 = glute vl = g Il fla i iy -y,

In order to find a bound for HuyH observe that
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u (t,y) =u (t,s)s _(t,y). Since s =y (t,s)_l, it follows
Y s y Yy s
from (2.3.5), (2.3.7) and Banach's lemma that
! T — 1
Isll T T e
Consider next
u (t,s) = £_(s) + J'o (Fgug + Py )dr,
then using (2.3.6) we find that
t
lu (e )] s i+ Jol (allull + blly_|)ar
t t
=i + b(l+i)f lekrdr + ar L hu _llar,
o 0 S
and integration of the second term and an application of
Gronwall's inequality finally yields
fu_ (e = (4 + yilty)by at,
R M
Because yz(tl) < 1 it then follows from
lg(ult . yq) = glulty.y,)ll atl
. Yl(tl)b e
= i+ Ny -

that g is a contraction on Y. Therefore, y = g(u(tl,y)) has
a unique fixed point Y, € Y, and the conclusion of our theorem

is a consequence of theorem 2.2.1.

2.5. Linear Problems. If the boundary value problem

(2.2.1) is linear, then the results of the preceding section
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can be improved. First it will be shown that in this case
the imbedding equation (2.1.6) is equivalent to two ordinary
differential equations, then analogs to theorems 2.3.1 and
2.4.1 will be given. For this purpose we consider the fol-

lowing problem:

(2.5.1) u'(t) = F(t,y,u) A(t)u + B(t)y + no(t)

y'(t) G(t,y,u) C(t)u + D(t)y + uo(t)

u(0) = £fy(0) + « ; y(tl) = gU(tl) + 8.

Here A(t) e L(X,X), B(t) ¢ L(Y,X), c(t) ¢ L(X,Y), and

D(t) ¢ L(Y,Y) as well as n and p are continuously differentiable
on I D [O,tl], and f and g belong to L(Y,X) and L(X,Y), resp.

The imbedding equation for this problem is given by (2.1.6)

and assumes the form

(2.5.2) u (t,y) + uy(t,y)[C(t)u+D(t)y+uo(t)] = A(t)utB(t)y+n_(t)
with the initial condition u(b,y) = fy + ¢. As outlined in

2.2, the solution of (2.5.2) is generated by the characteristics

{t,y(t),u(t)} through the initial manifold. The corresponding

characteristic equations are

Il

fs + ¢«

(2.5.3) u'(t) A(t)u + B(t)y + no(t) u(0)

y'(t) C(t)u + D(t)y + uo(t) y(0) = s.

Now by theorem 2.1.2 there exists the following unique solution

for (2.5.3):
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(2.5.4) u(t) fs+y t
= C(t,0) + f cit,r) [ Motthg
y(t) s o uo(r)

r,

where the resolvent C(t,r) belongs to L(X x ¥,X x ¥). Let

PX and Py be the bounded projections from X x Y onto X and Y,
resp., and assume that JX and Jy are the injections into

X x Y from X and Y, resp., then we can define the operator
Cij(t’r) = PiC(t,r)Jij, i,j = x,y. Notice that from C(t,t) =1I
follows that Cij(t,t) = Siin, where IX and Iy are the identity
operators in L(X,X) and L(Y,Y), resp. With this notation

the resolvent C(t,r) can be written in the form of an operator
matrix

(’cxx(t,r) ny(t,r)}

cl(t,r) =
\ ny(t,r) ny(t,r)x .

Accordingly, (2.5.4) assumes the component form

(2.5.5) u(t,s) = cxx(fs+a) + nys + nl(t)

i

y(t,s) ny(fs+a) + nys + ul(t),

t No It "o
V = = P Clt, dr. Th
where nl(t) PX L)C(t,r)(u;>dr and ul(t) v Jo ( r)&poj us

2.5.6 t,s) =[lc £ +c¢c 1 and
( ) vl ) L x vy
-1
(2.5.7) s(t,y) = [nyf + ny] ly - nya ul(t)]
lead to
-1

= + £+ - C _a-p, (£)]

(2.5.8) alt,y) = Lo £ + ¢ le £+ c 17Ty - ¢ amw (£)

+ Cxxa + nl(t).
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. -1
.
Setting u(t) =[c__f + c_ Jlc + C ]

and h(t)

- ' -1
- f +C + +
[Cxx xy][cyx ny] [nya p'l(t)] * Cxxd+nl(t)’
we obtain the following representation for the solution u(t,y)

of (2.5.2):

(2.5.9) u(t,y) = u(t)y + h(t).

Substitution of (2.5.9) into (2.5.2) then results in

[u'+uc(t)u + ub(t) - A(t)u - B(t)ly = -h' - uC(t)h—uuo(t) + A(t)h+no(tL

Since this equation has to hold for all y ¢ Y, it reduces to
(2.5.10a) u'(t) + u(t)c(t)u(t) + u(e)dD(t) - A(t)u(t) - B(t) =0
(2.5.10b) h'(t) + ult)c(t)h(t) + ult)p (t) - A(t)h(t) - ng(t) = 0.
From u(O,y) = fy + « it follows that
(2.5.10c¢) u(0) = £
(2.5.ldd) h(0) = .
Equation (2.5.10a) is an operator Riccati differential equation
defined on L(Y,X), and (2.5.10b) is a linear non-homogeneous
equation defined on X. Conversely, if u(t) and h(t) satisfy
(2.5.10a and b), resp., for all t ¢ [O,tl], then it follows
by differentiation that u(t,y) = u(t)y + h(t) is the (unique)
solution of (2.5.2) on [O,tl] X Y. Hence problems (2.5.2)
and (2.5.10) are completely equivalent.

At this point two observations should be made. First of

all, if u(t) is a solution of (2.5.10a) defined on [O,t.1,

1
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then for all continuous source terms Mg and W the linear
equation (2.5.10b) has a unique solution h(t) for t e [O,tl].
The existence of u(t,y) for (2.5.2), therefore, is not in-
fluenced by the source terms. Secondly, let ul(t,y) be the
solution of (2.5.2) and assume that u2(t,y) is a solution of
(2.5.2) when no(t) = no(t) = 0. Then it follows from the
representation u(t,y) = u(t)y + h(t) and (2.5.10a) that the
partial Frechet derivatives satisfy

uly(t.y) = uzy(t.y)-

This property has already been observed by Wing in [23]. How-
ever, it generally does not hold when F and G are non-linear
in u and y. For example, let us consider two cases for the

source term uo(t) in the following non-linear problem:

2
(2.5.11) u (tiy) + uy(t:y)[y +u (B)] =y
u(o,y) = 0.
Example a: uo(t) =0

In this case the surface is generated by the characteristics

satisfying

u'(t) vy u(o) 0

y'(t) y2 y (0) S.

These equations have the locally unique solutions

u(t) = -ln(l-st)
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—~ _S
y(t) - .

Hence s = Iﬁ%_ , and the integral surface for (2.5.1l1l) is
Yy

u2(t,y) = 1n (1+ty),

from which we obtain

t
l+ty

uzy(t,y) =

Example b: uo(t) = 1.

Now the characteristic equations are

u'(t)

y u{(o) =0

y2+l,y(0) = s,

y'(t)
and the corresponding characteristics are given by

-1 -1
u(t) -1ln cos(t + tan "s) + 1ln cos tan s

-1
tan(t + tan “s).

<
‘-r
i

he solution of {(2.5.11l) can then be seen to be u (t,y) =

l Ay

In (cos t + ysin t), from which it follows that

u (tIY) = tan t .
ly 1l +y tan t

It is now clear that in general u # u .l)
ly 2y

1) 1n [ 237 Wing outlines a proof to show that also for non-
linear problems the derivative u_(t,y) does not depend on the
source terms. This derivation, Kowever, i1s in error. 1In
fact, system (2.4) and (2.11) in ([ 237, p. 362/3) are not
identical, since they usually involve the distinct solutions
of (2.1) and (2.10), resp.; consequently, (2.12) does not
hold. For linear systems (2.4) and (2.l1ll) are, of course,
identical.
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This existence of an integral surface u(t,y) for the Cauchy
problem (2.5.2), and consequently, the existence of solutions
for (2.5.10a and b), will be considered next. First of all, it
should be noted that theorem 2.3.1 applies to linear systems.
Therefore, u(t,y) exists for all y ¢ Y and all t such that

1 k
0st<t=2=<1n(l +——).
e n( (l+i)M)

But because of the linearity of problem (2.5.1), a second, some-
what different, estimate can be given. Using the notation in-
troduced for theorem 2.3.1 we shall prove

Theorem 2.5.1: Let F(t,y,u) = A(t)u + B(t)y + no(t) and

G(t,y,u) = C(t)u + D(t)y + po(t) be continuously differentiable
for t ¢ I. Then there exists an integral surface u(t,y) to

(2.5.25 ut(t,y) + uy(t,y)G(t,y,u) = F(t,y,u)

through u(0,y) = fy + o« for all y ¢ Y and all t ¢ I such that

(2.5.12) 0=t <% =22 1n(1 +

d+k )
d+k

c(l+i)
We shall prove this theorem in two steps. First we give

Lemma 2.5.l1l: Let ys(t,s), given by (2.5.6), be non-singular

for all t ¢ [O,t2], then the surface u(t,y) for (2.5.2) exists
for [O,t2] X Y.

Proof: Since ys(t) is non-singular for t e [O,t2], u(t,y)
given by (2.5.8) exists for all (t,y) e [O,t2] x Y, which

proves the lemma.
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Proof of theorem 2.5.1: By the preceding lemma it suf-
fices to prove that ys(t,s) is non-singular for t ¢ [O,t).
But since

' 1 = + I 1 =
ys(t v) GuuS GyYs ys(O s) I
is a linear equation in the Banach space L(Y,Y), theorem

2.1.2 can be applied, and the solution is therefore

rt

ys(t,S) = c(t,0)1 + ) C(t,r)Gu(r,y,u)us(r,s)dr.

(o]

Here, C(t,r) is the resolvent of U' = Gy(t,y,u)OU. Since
C(t,r) is an invertible bounded linear operator in
L(L(Y,Y),L(Y,Y)), it follows from

(2.5.13) yg(t,s) = c(t,0[1 + [t c(o,r)6 u_(r.s)ar]
‘0

and from Banach's lemma that ys(t,s) will be  non-singular if

t
i E)C(O;r)Gu(r,y,u)uS(r,s)drH < 1.

By (2.1.3) the resolvent C(O,r) satisfies
Cr(olr) = - C(O,r)Gy(r Y,u), C(OIO) = Il
and Gronwall's inequality yields
dt

lc(o, o)l = e .

Furthermore, since C(t) is continuous on I, there exists a

constant c such that [|[C(t)ll = ¢ for all t ¢ I. Finally, (2.3.6)

leads to

., _kt
HusH s (1+i)e -,
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and therefore ys(t,s) is certainly invertible if

(2.5.14) I {‘ZC(O,r)Guusdr‘\[ ‘

iIA

k¥

as was to be shown.

Thus, problem (2.5.2) has a solution u(t,y) for all y ¢ Y
if 0=t < max {t£ , t}, where t and t are given by (2.3.2) and
(2.5.12), resp. Moreover, it should be noted that (2.5.12)
takes into account the uncoupling of equations (2.5.1) which
occurs if ||c(t)| = 0, for in this case v (t,s) will always be
non-singular.

Two other methods of proving an existence theorem for
(2.5.2) and, equivalently, for (2.5.10a) should be mentioned
here. First, in {4] Bellman and coauthors present a global
existence theorem for a very special matrix Riccati differential
equation. For this purpose they convert (2.5.10a) into an
integral equation, which then is shown to be a contraction map-
ping. The same approach is used in [1? by Bailey in order to
give an existence theorem for the Riccati equation derived
from problem B. Secondly, in particular cases it may be pos-
sible to take into account the structure of the operator

t
I+ {OC(O,r)Gu(r,y,u)us(r,s)dr of (2.5.13) in order to conclude

o

(1+i)c [.te (k-,-d)rdr_(l"'i)c (e (k+d)t—l

)
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its non-singularity. For example, information about its spec-
trum, or, in a finite dimensional setting, about its determinant
may be available. For instance, consider the linear scalar
(characteristic) equations

(2.5.15) u'(t)

i
Q

a(t)u + b(t)y + no(t) u(0)

v'(t) c(t)u + d(t)y + po(t) y (0)

li
0

then we can prove

Theorem 2.5.2: Suppose that the problem (2.5.15) satisfies

1A

the condition b(r)c(t) =z 0 for all 0 = r t < », then the cor-
responding imbedding equation

(2.5.2) has a unique solution u(t,y) through u(0,y) = « which
is defined for all y and all t = O.

Proof: Lemma 2.5.1 applies and we need only show that

ys(t) is non=-singular. From (2.5.15) we obtain

It
o

u;(t) a(t)us + b(t)ys u_ (0)

I
l—-l

yé(t) C(t)us + d(t)ys ys(O)

and it therefore follows that

t
us(t) = £)C(t,r)b(t)ys(r)dr
_ t
y (t) = T(t,0)[1 + J'OT(o,r)c(r)us(r)dr].

Here the fundamental "matrices" C(t,r) and T(t,r) are positive
exponential functions. Substitution of u into the expression

for Yo then yields
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L .r
y (t) = c(t,0)[1 + F r C(O0,r)T(r,x)b(x)c(r)y (x)dxdr].
S o o s
Since ys(O) = 1, the double integral will always be non-negative

and hence ys(t) > 0, which proves the theorem.

Let us now turn to the boundary value problem (2.5.1).
We shall use the notation introduced for theorem 2.3.1 and
prove the following analog of theorem 2.4.1:

Theorem 2.5.3: Problem (2.5.1) admits a unique solution if

lall (i+ vl(tl)b)e(a+d>tl

M 1 - y3(tl)

i

where yl(t) and y3(t) are given by (2.3.7) and (2.3.14), resp.

Proof: The bound

-1 dt 1

st ——
-v3(

ly, (t)

is a cénsequence of (2.5.13) and Banach's lemma, and the con-
clusion then follows as in theorem 2.4.1; namely, y4(tl) < 1
assures that y = g(u(tl,y)) is a contraction mapping which
has a unique fixed point Yo € Y; moreover, the characteristic
through (tl’yo’u(tl'yo)) solves the boundary value problem
(2.5.1).

In conclusion of this section on linear boundary value
problems, we shall show how our results relate to the so-called
"sweep"” (or chase) method for linear second order ordinary

differential equations. Berezin and Zidkov [ 7] describe this
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method in detail and present several applications. The basic
idea behind the sweep method, however, becomes more apparent
from the discussion given in Gelfand and Fomin {127. There,

the following two point boundary value problem is considered:

(2.5.16a) y"(t) = p(t)y(t) + no(t)

(2.5.16b) yv'(a) = fy(a) + «

(2.5.16c) v'(b) = gy(b) + R

where f, g, o, and 8 are constants. In the sweep method one

looks for a function y(t) defined by

(2.5.17) y'(t) = u(t)y(t) + h(t),

which, moreover, satisfies (2.5.16a and b). Substitution
of (2.5.17) into (2.5.16a) then leads to

2
(2.5.18) u'(t) + ul(x) -

h3

(£) = 0

h'(t) + u(t)h(t) - n_(t) =0,

and the initial condition (2.5.16b) requires that u(a) = £
and h(a) = . Now, for known u(t) and h(t) the equation
(2.5.17) defines a direction field for t ¢ [a,b], which is
said to move the boundary condition (2.5.16b) through the in-
terval [a,b]. This is the so-called forward sweep. If at

t = b the system

e
o
I

gy(b) + =

<
o
il

u(b)y(b) + h(b)
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has a solution {y(b),y'(b)}, then equation (2.5.17) with the

initial value y(b) yields the solution y(t) of problem (2.5.16).
Similarly, one can define a backward sweep which moves

(2.5.16¢c) from t = b to t = a. The solutionh of (2.5.16) is

then the common trajectory of the forward and backward sweeps.
The equations (2.5.18) assume a different meaning if the

technique of this chapter is applied to problem (2.5.16).

First of all, that problem is equivalent to

u(t) u(a)

y'(t) gy(a) + o.

u'(t)

i
I

plt)y(t) + no(t) u(b) gy (b) + R.

For this linear boundary value problem the equations (2.5.1l0a

and b) become

u () + u(t) - p(t) = O a(a)

]
Hh

It
R

h'(t) +u(t)h(t) - n_(£) =0 h(a)

Thus we see that the forward sweep by means of (2.5.17) cor-
responds exactly to generating the surface u(t,y) = u(t)y + h(t)
of the imbedding equation (2.5.2) through the initial manifold
u(a,y) = fy + o, and the backward sweep will yield the surface

through the initial manifold u(b,y) = gy + 8.

2.6. The Imbedding Equation for Transport Processes in

Finite Slabs. The method of this chapter now allows us to

derive the imbedding equation for
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1
Problem B: UN (£, 1) +ON(t,u) = %?-j N(t,))dx
-1
N(O,un) = 0O for p e (0,1]
N(tl,u) = g(w) for v ¢ [-1,0).

Problem B is the Boltzmann formulation for a steady state
neutron transport in a slab, and its derivation and physical
interpretation may be found in [37. 1In order to find the
imbedding equation for the particle density function N(t,u),
we have to transform problem B into a two point boundary
value problem of the type (2.5.1); for this purpose we set

(2.6.1) u(t,u) = N(t,p) for w e (0,1]

y(t,m) = N(t,n) for n ¢ [-1,0).

Then problem B can be written as

N T e PO oy gen
- ou(t,n) + 51 Jou(t,A)dA‘fj_ly\L,A)uAJ

(2.6.2) Mut(t,u)

NGO r
i
1

- oy(t,n) + 5L

nyt(t,n)
u(o,p) = 0; y(tl,n) = g(n).

In order to avoid the singularity of problem B which occurs
for uw = 0, we shall consider two specially restricted cases only.
Case a: For given €y > 0 and €5 > 0 assume for problem

(2.6.2) that

u(t,w) = N(t,u) for u e [e;,1]

y(t,n) N(t,n) for n e [—l,-ezj,
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and that y and o are non-negative constants.

Case b: vy is a non-negative constant and the function

m defined by m{t,s) = olt,8)
6

is continuous on [O,tl] x [-1,1].

We shall not enter into an investigation whether these
restrictions are physically meaningful; in fact, other condi=~
tions may perhaps be more realistic. Nonetheless, the subse-
quent treatment of these two cases will indicate how a more
concrete and numerically useful equation can be found from
the generalized imbedding equation (2.5.10a).

Case a: If C(D) is the Banach space of continuous func-
tions defined on the compact set D, then with the identifi-
cation -

u: [a,b] » X where X = C[el,l] = C(Dl)

y: [a,b]l - ¥ where Y C[—lpez] = C(D2)

the system (2.6.2) can be rewritten as

(2.6.3) u'(t) mu + m,L.u + m L2y u(0) =0

1 271 2
y'(t) = m4LP+ myy + m4L2u y(tl) = f ¢ C(D2).
Here Ll is the linear functional on X defined by
L,u = EDlu(x)dk,

and L2 is defined on Y by
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Moreover, we have set

- - g - Yo
™ m My = 2
g
= -c = Yo
M3 m Tg 7 29 ¢

hence my, m, e C(Dl) and my, m, e C(D2). Since the boundary
value problem (2.6.3) is linear, the equations (2.5.10) have

to be satisfied. From (2.5.10a and c) we therefore obtain

(2.6.4) fu'(t) + um4Llu + um, + um4L2 - mu - m2Llu - m2L2]y =0
u(0)y = 0.
The second equation (2.5.10b) has the unique solution h(t) = 0
because uo(t) = no(t) = o = 0. Thus, (2.6.4) is the correct
imbedding equation for problem B. Furthermore, theorems 2.3.1
and 2.5.1 apply to this linear boundary value problem, for

which the following estimates hold:

Hm +m LlH = ﬁuﬁ— I|- %41 + %% yDlu(x)dxH = gz(l+§)s

and similarly,b = Y¥% , ¢ =X9 , and d = & (1+X). From (2.3.2) and
2¢1 2e¢n . €9 2

(2.5.12) it now follows that (2.6.4) has a unique solution if

either
£ o< t = In(1l + 2(1+v)
1 o(l Y) 2+y
or
tl <t = —2¢ In(l + ———l) where ¢ = min{el,ez}.
o (4+3vy) Y
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This result is no longer useful if ¢ - O because then E,E - 0.

Case b: This time the Banach spaces are given by

il

x = c[0,1] = C(Dl)

Y c[-1,0] = C(D2).

Since QL%LQL is assumed to be continuous on the compact set

[O,tl] x [-1,1], we can choose some constant C such that

WOftlézu < C
| i - ¢
8

The discussion of Case a) now carries over, so that the im-

bedding equation again is given by (2.6.4). Furthermore,

the following bounds are seen to hold:
a=d-=c(l+ %), b =c¢c-= %}

Hence in this case the surface u(t,y) will exist for all y ¢ Y

and all t such that t < max {t , €},

where 'E: = 1 In(l + M‘)
C(l+'\() 24y
T = 2 In(l + 443y ).

Cc(4+3vy) Y
While the present theory assures that the operator equa-
tion (2.6.4) has a unique solution for sufficiently small t,
such a solution may be difficult to compute from (2.6.4).
However, we can use here the well known fact that in the space
of continuous functions all bounded linear operators can be

represented as integral operators:
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Theorem 2.6.1 ([11] p. 430): Let S be a compact Hausdorff

space and let U be a bounded linear operator from a Banach
space Y into C(S). Then there exists a mapping 1: S - Y'

which is continuous with the Y topology in Y' such that

(1) Uy(s) = 1(s)y, yeY, seS8
(2) lull = sup|r(s)|.
seS

Conversely, if such a map 7 is given, then the operator U
defined by (1) is a bounded linear operator from Y into C(S)
with norm given by (2).

This theorem is applicable to Case a and Case b, where
c(s) = C(Dl). Moreover, since Y = C(D2),the Riesz representa-
tion theorem (see [18], p. 204) can be applied to guarantee
the existence of a normalized function u((s,\) of bounded
variation in D2 such that

(s)y = [ yOou(s,an)
2

for vy ¢ C(D2).
It therefore follows that the solution u(t,y) = u(t)y e C(Dl)
of (2.6.4) can be represented as the Stieltjes integral

(2.6.5) ult,y)(p) = .fD y(\)u(t,p,dr)
ip,

where u(t,w,)\) is differentiable with respect to t, continuous

with respect to p and of bounded variation in ). Substitution




73

of (2.6.5) into (2.6.4) and changing the order of integration
leads to

f f o a0
(2.6.6) ;Dz[ut(t,u,da)+JDlJDzu(t,u,dx)%xu(t,ﬂ,da)d?+JD u(t,u,dﬁlﬁgda

2

- u(t,p,do) + < u(t,p,do) - YO ‘( u(t,s doz)dﬂ—L-doz] (a)=0.
o " 2u 4Dy

Our derivation has thus proved that equation (2.6.6) is
equivalent to the imbedding equation (2.6.4). Unfortunately,
however, (2.6.6) is still impractical to use. Therefore, let
us now add the assumption that the integrator u(t,u,\) of (2.6.5)
not only is of bounded variation but is even continuously dif-
ferentiable on D2. Then (2.6.5) becomes
(2.6.7) u(t,y) (w) = .E‘Dzu)\(t'u')\)yu)dx'

For ease of comparison with the imbedding equation derived in

[22], we set ux(t,u,x) = =—— R(t,u,7),

and with this notation the equation (2.6.6) can be simplified to

~

1 o £ /o
‘ ’ ’ ,ﬂ, ﬂd + P PLE —\‘— (2]
fDl[Rt(t,u,oz) * 3 JDerzR(t W x)l—nR(t R, o) ARAN jDZR(t w,R)¥2a

g g 0] r .
- ZR(t,u,a) R (L, u, R(t,R,a)drR
o ( W Ol) m ( M Ol) %E "D_L

- X9l Jy(o)da = O.
1

Since this equation has to hold for all y ¢ C(Dz), the integrand

must vanish, and hence we obtain

3

g - 9 =Yoo | “,@)dm
(2.6.8) Rt(t,u,oz) + (LL a)R(t,Lb,ot) o JDlR(t,4 o)
+ j R(t, u,ﬂ)x_dﬁ+ ) j R(t,p, \)YOR(t,B,0)dBar-2¥L = 0
Dp 2R M JD 3N m
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The initial condition u(O)y = 0 then requires that R(O,p,o) = 0.
Moreover, our derivation shows that equation (2.6.8) remains
valid if %-= g—g-:-’I-L-H-)--and v = v(t,u, o).

Equation (2.6.8) is the imbedding equation derived for
problem B by Wing in [22]. There, the representation (2.6.7)
is assumed to hold a priori, and then a size perturbation
analysis is performed. A second, somewhat different, imbedding
equation was derived for problem B in [1l], where, a size per-
turbation applied to (2.6.7) resulted in

’ 1 1 ¢ ax
2.6.9 ,a)+to (= - = , W, - X9 J A\, +YO , 0, R)dR
( ) Rt(tlu o) G(M a)R(t W, o) 5 :DlR(t A a)T— ZQO(t g, R)dr

_ oy [ j R(t, 7, a)dh R(t,u,R)dn + Yol = 0.
2n Y D1v D 2 o

The difference between (2.6.8) and (2.6.9) is evident, but the
reason for this variance is not clear. For eguation (2.6.9)
Bailey proves the existence of a solution R(t,u,o) over the

interval [0,t,] subject to the condition

1
1 -
FHL - e ot1/2

(2.6.10) vj_( ydn < 1.

The results obtainable from theorems 2.3.1 ani 2.5.1 are more
restrictive. They do, however, agree qualitatively with (2.6.10)

in that the interval of existence [O,t.] grows with decreasing

1

v and o.




CHAPTER 3

TWO POINT BOUNDARY VALUE PROBLEMS FOR

LINEAR EVOLUTION EQUATIONS

The Boltzmann formulation for time dependent transport
models frequently leads to boundary value problems for a
hyperbolic system of first order partial differential
equations. Such problems remain outside the scope of chapter
2. However, with the aid of the theory for the so-called
evolution equation, results similar to those of the preced-
ing sections can be proved. Following closely the outline
of chapter 2, we shall first present some well known features
of this theory, and then in 3.2 extend the theory of character-
isticé to the case, where the characteristic equations are
given as linear evolution equations. Next, the imbedding
equation corresponding to a boundary value problem for linear
equations of evolution is derived. Subsequently, in section
3.4 some sufficient conditions are given under which the
Cauchy problem for this imbedding equation and also the origi-
nal boundary value problem admit unigue solutions. Finally,
in section 3.5 these results are applied to problem C.
Throughout this chapter we shall use the notation introduced

in 2.1. 1In addition, the Banach spaces X and Y are always

75
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assumed to be separable.

3.1. Linear Evolution Equations. The imbedding method

presented below will rely on the theory for equations of
evolution. In particular, we shall be concerned with the
following linear evolution equation:

(3.1.1) u'(t) = Au(t) + Bu(t) + vy(t), u(0) = u -
Here, A: D X - X is a closed linear operator, B ¢ L(X,X),
and vy : (-»,») -» X is a given abstract function. First, we
shall present some well known theorems which state conditions
under which the Cauchy problem (3.1.1) admits a unique solu-
tion. For this it will be convenient to break this pfoblem

into three parts and to treat successively the existence of

a solution for

(3.1.2a) u'(t) = Au u(0) = u .
(3.1.2b) u'(t) = Au + Bu u(0) = u and
(3.1.2c) u'(t) = Au + Bu + vy (t) u(0) = u -

Problems (3.l1.2a and b) can be solved with the help of
the theory of analytical semi-groups. The following dis-
cussion is a summary of the theory presented in [11] and [13]
pertinent to these two problems. In brief, (3.1.2a) has a

solution u: [0,»] -» X provided A generates a so-called semi-

group.
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Definition 3.1.1: A family {T(t)}, 0 < t < =, of

bounded linear operators in X is called a strongly continuous

semi-group if

(1) T(stt) = T(s)T(t), 0 < t,s < =
(2) - T(0) =1
(3) For each x ¢ X, T(t)x is continuous in t on [0,«],

If, in addition, the map t - T(t) is continuous on [0,«] in the
uniform operator topology, then the family {T(t)} is called a
uniformly continuous semi-group. Furthermore, if {S(t)} defined
by S(t) = T(-t) is also a strongly continuous semi-group, then
{T(t)} will be called a strongly continuous group.

The connection between a semi-group {T(t)} and its so-
called infinitesimal generator operator follows from

Definition 3.1.2: For h > O the linear operator Ah is

defined by the formula

_ T(h)x - x
Ahx = -——E———_ , X e X,
Let D(A) be the set of all x ¢ X for which the limit, lim A_x,

h-o h

exists and define the operator A with domain D(A) by the formula
Ax = lim A_x, x ¢ D(a)
h
h-o
Then the operator A: D(A) € X - X is called the infinitesimal
generator of the semi-group {T(t)}.

Assume now that {T(t)} is a strongly continuous group,

then it follows from the definition 3.1.2 that -A is the
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infinitesimal generator of the semi-group {S(t)} where
S(t) = T(-t). 1In this case, A is called the infinitesimal
generator of the group {T(t)}. Another consequence of
definition 3.1.2 is

Lemma 3.1.1: Let {T(t)} be a strongly continuous semi-

group and A its infinitesimal generator, then for x e D(3)

and 0 < t < » the following three properties hold:

(1) T(t) x ¢ D(A)
(2) %E T(t)x = AT{t)x = T(t)Ax
(3) D(A) is a dense linear subspace of X.

If a given operator A: D(A) € X - X is the generator of
a strongly continuous semi-group {T(t)} and if u € D(A), then
it follows from property (2) that T(t)uo is a solution of
probiem (3.1.2a). Furthermore, it can be shown that this solu-
tion is unique (see [13], p. 621). The question, when a closed
linear operator is the infinitesimal generator of a semi-group
{T(t)} is answered by the well known Hille-Yosida-Phillips

theorem ([111, p. 624):

Theorem 3.1.1l: A necessary and sufficient condition that

a closed linear operator with dense domain be the infinitesimal
generator of a strongly continuous semi-group is that there
exist real numbers M and w such that for every real vy>w, Y

belongs to the resolvent set of A and
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n, n=1,2,.....

Iz -0 < M(i-w)”

For the proof we refer to [11]. For the imbedding method
we shall employ groups instead of semi-groups; the following
corollary of theorem 3.1.1 states when A is the infinitesimal

generator of a group {T(t)}.

Corollary 3.1.1: A necessary and sufficient condition

that a closed linear operator A with dense domain generates
a strongly continuous group of bounded operators on (-=,«)
is that there exist real numbers M > 0 and w > 0 such that
| A1 -2 | < m(a]-)" , A > wand A < -w.

Moreover, if A generates {T(t)}, - = < t< =, then [|T(t)] < Mewltl.

For the proof see again [11].

We shall now assume that A satisfies the conditions of
coroilary 3.1.1 and that u e D(A), so that problem (3.1.2a)
has the unigque solution u(t) = T(t)uo. In this case, problem

(3.1.2b) also has a unique solution, because we can apply

Theorem 3.1.2: If A is the infinitesimal generator of

a group of bounded linear operators defined and strongly con-

tinuous on (-»,») and if B ¢ L(X,X), then A+B defined on D(A)

is likewise the infinitesimal generator of a group {S(t)} of

bounded linear operators defined and strongly continuous on (-»,®),
This theorem is proved in ([13], p.390) by showing that the

corollary of the Hille-Yosida-Phillips theorem applies to the
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operator A+B. Furthermore, it is a consequence of this proof

wHBDTel e

that if ||T(t)|] §-Mewlt|, then ||S(t)| < Me
if the operator A in (3.1.1) generates the group {T(t)}, then
A+B generates the group {S{(t)}, and therefore problem (3.1.2b)
has the unique solution u(t) = S(t)uo.

These results will now allow us to prove an existence
theorem for the Cauchy problem (3.1.2c). For this purpose
we adapt a theorem of Kato, which is given in [16] for a more

general evolution equation.

Theorem 3.1.3: Let Al = A+B be the infinitesimal genera-

tor of the strongly continuous group {T(t)}. Let y(t) belong
to D(A) for all t, and assume that vy(t) and Aly(t) are strongly
contingous. Moreover, suppose u_ ¢ D(A), then
u'(t) = Au + Bu + y(t), u(0) = ug
has a unique solution u: (-=,») - D(A) < X, which is given by
(3.1.3) u(t) = T(t)uo + JtT(t—r)y(r)dr.
Proof: Since T(t) and y(t)oare continuous, the integrand

of (3.1.3) is continuous and hence u(t) is well defined. Dif-

ferentiation and use of lemma 3.1.1 now leads to

t
(3.1.4) u'(t) = A T(t)u_ + A;T(t) J‘OT(—r)v(r)dr + (L)
or u'(t) = Alu(t) + y(t).
Thus, u(t) will be a solution of (3.1.1) provided u(t) is con-

tinuously differentiable. Applying lemma 3.1.1 again, we
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can write (3.1.4) as
t
u'(t) = T(t)Au_ + T(t)Alj T(—r)y(r)ir + v (t),
o
so that u'(t) will be continuous if T(t)AlJ T(-r)vy(r)dr is
o

continuous. Here, Al is a closed linear operator and from

corollary 3.1.1 it follows that the resolvent (>\I—A)_1 is

bounded for sufficiently large le. Therefore, the follow-

ing is true for large Iklz
. |
(3.1.5) A [ T(-r)y(r)ar =@, - a0 [*(@ A1) H A AT T(-x) y (x)dx
. 1 ! 17" Y

t
+xj T(-r)vy(r)dr
£ o

|

v

t t
(A, -AI)T(r)y(r)dr +xj T(-r)y(r)dr = I T(-r)A y(r)dr.
O (@] o]

By hypothesis, Aly(t) 1s continuous; hence the integral

wd

t
j T(—r)Aly(r)dr exists and u'({t), given by (3.1.4), is continuous.
o
Moreover, the solution of (3.1.2c) is unique because the dif-
ference w(t) between any two solutions satisfies the equation
w'(t) = Alw(t), w(0) = 0, which has the unique solution w(t)

= 0 ¢ X. Finally, from (3.1.5) it also follows that u(t) given

by (3.1.3) remains in D(Al) for all te(-»,x).

3.2. A Characteristic Theory for Evolution Egquations. The

preceding existence theorem for the evolution equation (3.1.1)
shall be employed in order to extend the theory of characteris-
tics to certain linear inhcmogeneous problems involving closed
linear operators, and for the remainder of this chapter it will

always be assumed that
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(3.2.1a) All:D(All)CXHX is the infintesimal generator of a

strongly continuous group {Tl(t)} which satisfies

e (o)) L I

(3.2.1Db) A22:D(A22)CY~Y is the infinitesimal generator of a

strongly continuous group {Tz(t)} which satisfies

|
Iz, (e llc &2 1El

(3.2.1c) B, eL(X,X), B._eL(Y,X), B, eL(X,Y), and B__eL(Y,Y).

1 12 21 22

(3.2.14) no(t) and uo(t) belong to D(All) and D(A22), resp.:

f h
urthermore, no(t),uo(t), (t), and Azzuo(t)

A1

are continuous for all t e (-=,®).

), and A__B..u(t) is continuous

(3.2.1e) B lD(All)CD(A22 22851

2

for all continuous abstract functions with values

in D(Al ).

1
It should be noted here that theorem 3.1.1 requires that

D(All) and D(A22) are dense in X and Y, resp. Using this
notation we shall define

F: (-»,») x D(A_..) x D(All)ﬂD(All) by F(t,y,u) = A__.u + B__.u +

22
B oy + mg(t)

G: (-»,») x D(A22) X D(All)ﬁD(A22) by G(t,y,u) B_,u + A22y +

21
B22y * uo(t)'

Then the following abstract "characteristic equations":

(3.2.2) u'(t) = F(t,y,u) = A__u+B utB L, y+n_(t)

11 11

y'(t) G(t,y,u) B u+A22y+B22y+uo(t)

21



83

can formally be associated with the partial differential equation
(3.2.3) u, (t,y) + uy(t,y)G(t,y,u) = F(t,y,u),

where (t,y,u(t,y)) e (-»,o) x D(A22) X D(Al ).

1
For a suitably restricted integral surface u(t,y) we can
prove the equivalence of (3.2.2) and (3.2.3). For this the

following lemma due to Segal [20] is needed:

Lemma 3.2.1l: If A is the generator of a strongly con-

tinuous semi-group {T(t)} on the Banach space X, and if f(t,u)
is once continuously differentiable on [0,~) x X, then a solu-
tion u of the equation
ult) = T(t-t )u_ + JtT(t—r)f(r,u(r))dr

has its value in D(A) throughout itz interval of existence
provided this is initially the case.

'Fér the proof we refer to [207. This result shall now
be used to present the following analog of theorem 2.1.5:

Theorem 3.2.1: Let w: (-=,») x D(A22) be continuously

differentiable and assume that wy(t,y) has an extension Wy(t,y) de-

fined on (-»,») x D(A..) = (-»,») x Y which satisfies

22
HWy(t,y)Hgk(t), where k(t) is bounded on compact subsets of

(-»,o). Then w is an integral surface of (3.2.3) if and only
if w - u = 0 along each characteristic {t,y(t),u(t)lin (-=,=)

X D(A22) X D(Al ).

1
Proof: We shall follow the proof of theorem 2.1.5 and
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assume that w(t,y) is an integral surface of (3.2.3). Let
(to,yo,w(to,yo)) be a point on this surface, and consider

the (non-linear) evolution equation

(3.2.4) y'(t) = lew(t,y) + (A22 + B22)y + uo(t), y(to) = ¥, -

If A22 + B22 generate the group {T(t)}, then it is easy to

verify that any solution y(t) e D(A%Z) of

(3.2.5) y(t) = T(t-t)y_ + jtT(t—r)[BZlW(r,y(r)) + u (r)lar
also is a solution of (3.2.5). Now gecause of the hypotheses on
w, the equation (3.2.5) may be considered.as a fixed point equa-
tion on the whole Banach space Y, and a standard argument shows

that for sufficiently small |t—to|, the equation (3.2.5) is a

contraction mapping on Y. Therefore, it has a unique solution

\Vs
P4

~

t)eY. It then follows from lemma 3.2.1 that for yOeD(Azz)
the éoiution y(t) also belongs to D(A22). Hence (3.2.4) has
a unique solution y(t) for sufficiently small lt—tol. The
chain rule can now be applied to
wit) = wit,y(t,t_,y))
to yield w'(t) = wt(t,y) + wy(t,y)y'(t) = w,+ wyG(t,y,w)=
F(t,y,w).
Hence {t,y(t),w(t)?}? is the unique characteristic through
(t vy Wit vy )).
The converse follows as in theorem 2.5.1

Thus (3.2.2) and (3.2.3) are equivalent provided there
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exists a surface u(t,y) which satisfies the conditions of
theorem 3.2.1. It should also be noted that a characteristic
which has a point in common with u(t,y) will remain on this
sur face,

Let us now turn to the Cauchy problem for equation (3.2.3)
and show that'under the hypotheses (3.2.1) we can generate a
surface u(t,y) through a given manifold.

Theorem 3.2.2: Let the initial manifold C c (-=,») x

D(A22) X D(All) be given parametrically by {t=0,y=s,u=fs+u}

where f ¢ L(Y,X) maps D(A22) into D(A.,), and where s ¢ D(A_.)

11 22
and o ¢ D(All)' Then the initial value problem
(3.2.6) u (t,y) + uy(t.y)G(t,y,u) = F(t,y,u)

t(s) = 0, y(s) = s, u(s) = fs + «
has a solution in some neighborhood N of C.
Proof: From the hypotheses (3.2.1) for F and G and from
theorem 3.,1.2 follows that the operator
233 * By 0 # | ° B,
Baa T By Ba1 0 )

defined on the separable Banach space X x Y (normed by the

sum of the component norms) generates a strongly continuous group

- - _ | g |
{T(t)} on X x Y. Furthermore, if Ml max {al+HBllL,d2+jB22L1,
M, = max {HBle,HBZlH} and

(3.2.7) k=M +M,,
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. | kit] : , .
then HT(t)L < e ' '. Theorem 3.1.3 can now be applied to integrate
(u'(t) (F(t,y,u) u(0) fs+a)
y' ()] " \e(t,y,u) y(Q)/ =\ s /.
Hence the characteristic through the point (0,s,fsta) € C
can be written as t
t . + . '3
u(t) = T(t) fsta + ‘ l T(t—r)(no(r)'Jdr
t .
v (£) s , \ g (1)

0
or, in component form (cf. (2.5.4) and 2.5.5)),

3.2.8 ' = Xy
( ) u(t,s) TXX(fs+a) + T s + nl(t)
t =
y(t,s) Tyx(fs+a) + Tyys + ul(t).
Moreover, T(0) = I requires that T,.(0) = §.I., i,j = X,y.
ij 1371

Consequently, the function h: (-=,®) x D(A22) X D(A22) defined
by h(t,y,s) =y - y(t,s)
is continuously differentiable on the open domain (-=,®) x

D(A22) x D(A,,).

22
Furthermore, h(0,s,s) = 0 and hS(O,s,s) = I. Therefore the
implicit function theorem can be applied to find s = s(t,y),
and the proof can be completed as in the case of theorem 2.1.6.

Since the equivalence of (3.2.2) and (3.2.3) was proved
only for the case when the integral surface u(t,y) satisfies
the conditions of theorem 3.2.1, the solution of (3.2.6) gen-

erated with the characteristic curves need not be the only

solution. On the other hand, the surface just constructed
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certainly satisfies u(t,y(t)) - u(t) = 0 along any character-
istic given by (3.2.8). Since the characteristic equations

have unique solutions through a given point, this surface
necessarily is the only integral surface into which the char-
acteristics {t,y(t),u(t)?} through C are imbedded. Further-
more, from the proof of the preceding theorem we obtain

Corollary 3.2.1: The integral surface u(t,y) of (3.2.6)

generated with the characteristics through C can be represented
as
(3.2.9) u(t,y) = ul(t)y + h(t),
where u(t) e L(Y,X) and where u(t)y and h(t) are continuously
differentiable on (-»,o) x D(A22) and (-«,»), resp.

Proof: The equations (3.2.8) lead to

-1 -

= 1 I _ _ () ]
s(t,y) [Tyxf + Tyy ly - T o ul(t)-

yX
and u(t,s(t,y)) = [T__f+T_Ts(t,y) + T o + n (t).
XX Xy’ XX 1
- - - - -1
i = +
Hence if u(t)y [Txxf + Txy] [Tyxf Tyy] y
A ~ A ~ —1 ~
= + + ] -T - t) 1
and h(t) [Txxf Txy] [Tyxf Tyy, L yx® “1( )

~

+ Txxa + nl(t),
then, as asserted, u(t,y) = u(t)y + h(t). The properties of
u(t)y and h(t) are obvious from their definition and the
hypotheses (3.2.1).
As in section 2.5, the respresentation (3.2.9) can be

substituted into (3.2.3). This leads to
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u'(t)y + h'(t) + u(t)[BZl(u(t)y+h(t)) + (A22 + B22)y + uo(t)i

= \ { "
(All + Bll)(u(t)y + h(t)) + Blzy + ”o(t)'

Since this equation has to hold for all y in the dense subspace

D(A22), it reduces to

(3.2.10a) (u' + uB,,u +'u(A22 + 522) - (All + Bll)u - B123y=0
(3.2.10b) h' + uBZlh - (All + Bll)h + uuo(t) - no(t) = 0.
Moreover, the boundary condition u(0,y) = fy + o requires that
(3.2.10c) u(0)y = fy

(3.2.104) h(0) = o.

Thus the surface generated by the characteristics is of
the form u(t,y) = u(t)y + h(t), where u(t)y and h(t) satisfy

(3.2.10a-d). We shall now give the converse

Theorem 3.2.3: If for all y e D(A22) the equations
(3.2.10a-d) have solutions u(t)y and h(t), then these solutions
are unigque and the surface u(t,y) = u(t)y + h(t) is identical
to that generated by the characteristics through the initial
manifold.

Proof: A straighforward differentiation shows that for
given u(t)y and h(t) the surface u(t,y) = u(t)y + h(t) is a
solution of (3.2.6). Furthermore, let J be a compact subset
of (-=,»). Then the strong continuity of u(t) yields suplju(t)yli<e.

ted
Hence by the principle of uniform boundedness (see [1l]p. 66),
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supHu(t)H < . Thus we see that u(t,y) satisfies the con-

ted

ditions of theorem 3.2.1 and, therefore, u(t,y(t)) - u(t) = 0
along any characteristic {t,y(t),u(t)} through C. The unique-
ness of the solutions u(t)y and h(t) now follows from the fact

that only one surface u(t)y + h(t) can contain the characteris-

tics {t,y(t),u(t)} through C.

3.3. The Imbedding Equation Corresponding to Two Evolution

Equations. The extension of the theory of characteristics
developed in the preceding section can be applied to find the
generalized imbedding equation for two point boundary value
problems involving closed linear operators:

(3.3.1) u'(t)

(All + Bll)u + BlZY + no(t), u(0) = £y (0) + «

213 (A'\'\ + B'\'\)y + I-L_(t), Y(t.|) = gu(t1) + =,
S L L L O i 1

il
w
c
+

y'(t)
Again, the hypotheses (3.2.1) are assumed to hold. Furthermore,

f e L(Y,X) and g ¢ L(X,Y) shall satisfy f: D(A22)~D(A ) and

11

g: D(All)ﬁD(Azz), resp. We shall also assume that o € D(Al )

1

and R ¢ D(A2 ).

2

By means of the shooting method, problem (3.3.1) is imbedded
into the family of initial value problems:

(3.3.2) u'(t) = F(t,y,u)

It
i
It

(All+Bll)u + B12y + no(t), u(0) fs+o

y'(t) G(t,y,u)

B_.u + (A__+B

21 22tBy)Y + ou (b)), y(0) = s,

where s ¢ D(A22). Theorem 3.2.2 then shows that integrating
(3.3.2) for all s ¢ D(A22) corresponds to generating the surface

u(t,y) for the Cauchy problem
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(3.2.6) ut(t,y) + uy(t,y)G(t,y,u) = F(t,y,u)

u(0,y) = fy + o.
Equation (3.2.6) is formally identical to (2.1.6) and will
also be called the generalized imbedding equation for prob-
lem (3.3.1). Moreover, corollary 3.2.1 and theorem 3.2.3
show that there exists one and only one surface u(t,y) for
(3.2.6) which is of the form u(t,y) = u(t)y + h(t)
where u(t)y and h(t) satisfy the equations (3.2.10a-d).
Assume now that this surface exists for all t e [O,tl], and
suppose that the equation y = gu(tl,y) + B has a fixed point

yo ¢ D(A..). Then theorem 3.2.3 assures that the character-

22
istic through (tl,yo,u(tl,yo)) is the solution of the bound-
ary value problem (3.3.1). Thus we have the following direct

analog of theorem 2.2.1:

Theorem 3.3.1t Problem (3.3.1) has a solution {u(t),y(t)}

belonging to D(All) X D(A22) if the integral surface

u(t,y) = u(t)y + h(t) for

(3.2.6) u (t,y) + uy(t,y)G(t,y,u) = F(t,y,u)
through u(0,y) = fy + o exists on some domain D D[O,tl] b4 D(A22),
and if y = gu(tl,y) + ® has a fixed point Y, ¢ D(A22). Then

the characteristic {t,y(t),u(t)} through (tl,yo,u(tl,yo)) is a

solution of (3.2.1).
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3.4. The Cauchy Problem For the Imbedding Equation.

From theorem 3.2.2 follows the existence of the surface

u(t,y) for (3.2.6) in a neighborhood N of the initial manifold
C. We shall now give some quantitative information about N

as well as a sufficient condition under which the boundary
value problem (3.3.1) has a unique solution.

Theorem 3.4.1l: Under the hypotheses {(3.2.1) the surface

u(t,y) = u(t)y + h(t) for (3.2.6) exists for all y ¢ D(A_.)

22
and all t such that

d,+B,, i+ 3
(1+0E ),

1
v 1B, + %

In{(l +

(3.4.1) O<t< t= 3 ),

B

2 21!

where k is given by (3.2.7).

Proof: The characteristics {u(t,s),y(t,s)} through the
initial manifold C exist for all t and all s ¢ D(A22). In
particular, the solution y(t,s) satisfies

y'(t) = (A2 )y + B, u(t,s) + uo(t), y(0) = s.

2*By) 21

By theorem 3.1.3 this equation has the unique solution
t

(3.4.2)  y(t,s) = T(t)s + [ T(e-r)(B,,
‘o

where {T(t)} is the group generated by A
(d2 + B22)|t|

u(r,s) + no(r)]dr,

22+B22; clearly

iT(t)]< e Furthermore, it follows from (3.2.8)

A

that u(t,s) = [T _£f+ T 1 s + n, (t), where [[T(t)] <
XX Xy 1

kit
e .
Let us show next that ys(t,s) is non-singular for 0 < t < t.

Since T(t) 1is invertible and
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t
y_(£,8) = T(¢) [T + jOT(-r>BZlus(r,s>er,

Banach's lemma can be applied to show that yq(t,s)—l exists,

provided that

t
HIOT(—r)BZluS(r,s)drH < 1.
Thus ys(t,s) is invertible if
t rt(d2+HB22H+k)r
(3.4.3) HJOT(—r)B2luS(r,s)drHSHBZIH(l+HfH) je ar
(dp+||Baoll+x) ¢
‘ - 1
= [B,, I (1+ll€])S , = v, () <1,
21 d2+HB22L+k 5
or if
d. +||B, ., l|+k
1 2 22
t < ¢ = ln(l+| [ ).
d,+iB,, ll+k 1B, M1+ £]))
Consequently, s = s(t,y) can be found along each characteristic

{u(t,s),y(t,s)}, provided 0 < t < E; and u(t,s(t,y)) = u(t,y)
is the desired surface. Moreover, it follows from (3.2.8)

that there corresponds a unique soeD( ) to each point

A22

(to,yo)e[O,t] X D(A22) such that y(to,so) =Yy, - Therefore,

u(t,y) is defined at each point (t,y) e [0,t) x D(A..), which

22

was to be shown.

A
e a8
0 A

0

is a bounded linear operator, then, as is

22

well known, the operator A + B generates the uniformly con-

(A+B) t
O

tinuous group e n X x Y. In this case not only theorem

3.4.1 but also theorem 2.5.1 apply to problem (3.2.6). It is

now easy to verify that d2 + B22 and k in theorem 3.4.1 are
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equal to the constants d and k, resp., used in theorem 2.5.1.
Thus (2.5.12) and (3.4.1) are identical, as was to be expected.
We shall now turn to the boundary value problem (3.3.1) and prove

Theorem 3.4.2: Under the hypotheses (3.2.1) the boundary

value problem

u'(t)

I

(A11+Bll)u + B12y + no(t) u(0) = £y (0)+q

y'(t) = B, ju +(A +B, )y + u_(t) y(t )=gu(t )+e

has a unique solutionf{u(t),y(t)} if 0 <t < t and

!
(k+d2H322L)tl

L - vglty)

lgll (]l £])= < 1.

Proof: The surface exists for all (t,y) e[0,t) x D(A22) and
by theorem 3.3.1 it suffices to show that y = gu(tl,y) + R
has a solution. But since we can write u(t,y) = u(t)y + h(t) and
u(t) = [T £+ T Js (t,y), it follows from the proof of the
S UXRX Xy~ y
preceding theorem and Banach's lemma that

-1
lgute)) l<ligliliT, £ + T iy, (e.8) 77

< gl (l+Hf“)ekt1e(d2+HBzzi)tl
- L= vgley) . .

Thus, under the above hypotheses, ng(tl)H<l. Therefore,
[r - gu(tl)]-l exists and the desired fixed point is
-1
= - + R].
y =[1 - gu(t)) 17 [gh(t)) + a)

Since gu(tl): D(A ﬂD(A22), g: D(A22)~D(A22) and B ¢ D(A22),

22

it certainly holds that yo e D( ). Hence the characteris-

A22

tic {t,y(t),u(t)} through (tl)yo) is the unique solution of
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(3.3.1).

3.5. The Imbedding Equation For a Time-Dependent

Transport Problem. The theory of this chapter shall now be

applied to our

Problem C: ' uz(z,t) + ut(é,t) oyl(z,t) u(o,t) = ¢

—yz(z,t) + yt(z,t) cu(z,t) y(zl,t) = g(t),
where g(t) is continuously differentiable on (-=,«) and
where o is a positive constant. Problem C is the Boltzmann
formulation for a time dependent one dimensional transport
model. In order to connect with the theory for evolution
equations, let us make the following identification:

ur (== ,©)=Cl-w, ]

y: (=, ©)=Cl - o],
where C[-»,»] is the Banach space of continuous functions on

the compacted interval [-»,»1, and where the norm is given by

x| = max |x(t)]|. It is known that C[-»,»] is a separable
te[—wle
Banach space (see [131, p. 531), and that the differentiation
operator %E = A is a closed linear operator with dense domain
D(A) in C[-»,»]. Therefore, problem C can be written in the form
(3.5.1) u'(z) = A U+ oy u(0) = 0
y'(z) = -ou + A22y y(Zl) = g ¢ D(A),

and the theory for the evolution equation can be applied pro-

vided the operator




95

\
A =(A11 0 )
0 A22
generates a strongly continuous group {T(t)} on C[-»,=] x

Cl-»,»], that is, provided A satisfies the conditions of

corollary 3.1.1. However, it is easy to verify from

A = = 2
y) \y‘ Y

that the spectrum of A is the imaginary axis, since other-

wise either u or y would grow exponentially, and hence no
longer belong to Cl-=,=7., Furthermore, it can be shown

(see[11], p. 630) that

u ® —u(t+r)

(1 - A)-l = [e—kr ( }dr for Re » > O
Y ‘Yo Ly (t+r)
_l[u\ o N /u(t+r%

(I - Aa) = [ e ! idr for Re A < O,

i '

\v/ o= -y (etry

so that |[( I - A)“1p<|

> |-

I for |A|> 0. This, of course, implies
that H( I - A)_nH51%ln. By corollary 3.1.1, A is therefore
the infinitesimal generator of a strongly continuous group
{T(t)} with ||T(t)|l<1, and all the preceding theorems apply
to the boundary value problem (3.5.1). Thus, the correct
imbedding equation for (3.5.1) is given by (3.2.10a and c),
which here assumes the form

(3;5.2) u'(z)y - ou(z)u(z) + u(z)Ay + Au(z)y -oy = O

u(0)y = O.
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Moreover, from theorem 3.4.1 it follows that (3.5.2) has a
unique solution u(t)y, which exists for all y ¢ D(A) and
all z ¢ [0,2), where now
- 1
(3.5.3) z == 1n 2,
o
This b d = = e =l eli=
(This boun on z holds, because here a, = d, HBll“ HBZZH | £li=0
and HB12H=HB21H = ¢), Hence the missing initial value a(zl) of
(3.5.1) is given by u(zl) = u(zl)g. However, this value is

difficult to compute from the abstract equation (3.5.2) and

a more concrete representation of u(z)y is desirable. Since
X =Y = C[-»,»], we can again apply theorem 2.6.1, and obtain
a representation analogous to (2.6.5), namely

u(z,y) (t) = j y(r)u(z,t,dr).

Q0D

Here, t-u(z,y)(t) is a continuously differentiable mapping
from [-»,»] to C [-»,o]. Substitution of this representation

into (3.5.2) leads to

(3.5.3) I y(r)uz(z,t,dr) -or J u(z,t,ds)u(z,s,dr)y(r)
+ J u(z,t,dr)y'(r)dr + I ut(z,t,dr)y(r) - oy(t) = 0,

and
u(0,t,r) = 0.
In order to connect these results with those found in
the literature and, in particulay, to arrive at the imbedding

equation obtained for problem C by Bailey [17, let us make
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the assumption that u(z,y)(t) can be written as a Duhamel
integral (see[871, pp. 512-5131})

.
(3.5.4) u(z,y) (t) = I R(z,t-r)y(r)dr
-0
where R(z,t) = 0 when t < 0. Then, if we agree to consider

only input functions y which wvanish for t < 0, then (3.5.4)
t

becomes the convolution integral j R(z,t-r)y(r)dr=(R*y) (z,t).
o}

This representation reduces equation (3.5.2) to

(R*y)z - o(R¥R*y) + R*y' + (R*y)t - oy = 0,
and since integration by parts shows that R*y' = (R*y)t,
we obtain
(3.5.5) (R*y)z—o(R*R*y) + 2(R*y)t - oy =0
(R*y) (0,t) = O.

In particular, let ¢ > O and define

o for t > [
o 3

y(e) =438 - 2%y for 0 < t < ¢
{0 for ¢t < O,

then it is easy to verify that y(t) e D(A) and |y(t)}|< 1.

Moreover, for sufficiently small ¢ we can write

t t t R
J R(z,t-r)y(r)dr = J R(z,t-r)dr = r R(z,r)dr=R(z, t).
o) o “o
For t > ¢, equation (3.5.5) then takes on the form
t. A
(3.5.6) ﬁz(z,t) + 2Rt(z,t) - GJ R(z,t—r)Rr(z,r)dr - o =0
o

R(O,t) = O.



98

This is the imbedding equation derived by Bailey in
(17, who assumes the input g{(t) = 1 for t > 0 and then
applies a size perturbation argument to the solution of
problem C, which is given implicitly by Duhamel's integral
(see again [8], p. 512-513). .

To conclude the presentation, let us point out some
possible extensions of this theory. First of all, we do
not have to restrict ourselves to boundary value for two
abstract differential equations. No additional theory is

needed to treat

(3.5.7) u'(t) = F(t,y,u) u(0)= £(y(0))
y'(t) = G(t,y,u) y(t)) = g(u(tl)),
M N
where u and y map [O,tl] into X = 1II Xi and Y = 1 Y , where
Lo P |
i=1 i=1

Xi and Yi are appropriate Banach spaces. 1In this case, the

generalized imbedding equation is a system of partial dif-
M

ferential equations defined on X = I Xi' Secondly, it may
i=1

be possible to base the imbedding method of chapter 3 on the

theory for the following more general type of evolution equation

u'(t) = A(t)u +F(t,u), u(0) = u

(for an outline of the theory for such equations see [171]).
Moreover, surfaces through general initial manifolds

u=u(s), y=y(s), x=x(s)
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can be considered. Finally, the question of the existence
of solutions certainly requires some additional attention,
because in the case of problem C, it is known [1l] that

the solution i(z,t) of (3.5.6) exists for all z > 0, in-

~

stead of only for z < z = lln 2.
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